
Nik Lever

THE

ThreeJS
PRIMER

I

https://www.facebook.com/groups/nikthreejs

© Nicholas Lever 2024

https://x.com/NikLever

https://discord.gg/k2udGkHMEm

https://youtube.com/c/NikLever

Links

https://niklever.com

https://www.udemy.com/user/nicholas-lever-3/

https://www.facebook.com/groups/nikthreejs
https://x.com/NikLever
https://discord.gg/k2udGkHMEm
https://youtube.com/c/NikLever
https://niklever.com/
https://www.udemy.com/user/nicholas-lever-3/

II

The ThreeJS Primer
Overview

is the most popular Open Source JavaScript library for

on the web, giving you the power to display incredible models and visualisations in

your browser and even on your smartphone!

Three.JS displaying 3D content

Displaying 3D content in a browser involves using the WebGL api. But the library

takes care of all the complex details leaving you able to think in terms of models,

cameras and lights.

Caption: threejs.org home page

III

This begins with a beginner-level primer to real-time 3D concepts and some

basic examples to get you started with the most important features that Three.JS has

to offer.

e-book

You'll learn how to quickly create a and how to add

meshes using the Geometry primitives included with the library. You'll find out how to

use the which will help as you learn to use the library. You'll

learn about materials and how to load a complex model that you may find from an

online store and how to animate your models.

scene, camera, and renderer

online Three.JS Editor

This is a quick introduction to the most important features of the library. After

completing the examples you will have a basic understanding of how to use Three.JS

in your own Web Apps.

This course is also available as a series of videos on and a course

on .

YouTube free

Udemy

Caption: Course on YouTube and Udemy. Click images to view.

https://www.udemy.com/course/the-threejs-primer
https://www.youtube.com/playlist?list=PLFky-gauhF44HqkjMaP-pB7ypF18EFAKB
https://www.udemy.com/course/the-threejs-primer
https://www.youtube.com/playlist?list=PLFky-gauhF44HqkjMaP-pB7ypF18EFAKB

Page 1

Table Of Contents

Introduction 3

2. A 3D Primer 7

3. Setting up a simple THREE.js app 15

4. The basis of all ThreeJS apps 19

5. Creating a rotating cube 28

6. The ThreeJS editor 33

Step 1 34

Step 2 36

Step 3 38

Step 4 40

Step 5 41

Step 6 42

Step 7 43

Step 8 44

Step 9 45

7. Geometries 46

8. Materials 53

9. Loaders 59

Page 2

10. Animation 66

11. Where to from here 74

Page 3

Introduction

I’m Nik Lever and I’ve been creating real-time 3d in the browser for over 25 years.

To create we will be writing HTML and JavaScript code. For that we need

a code editor. In this course I’ll be using it is available free if you haven’t got a

copy and want to follow my steps exactly then and install it now

(). If you prefer to use another code editor, then that’s

completely fine.

ThreeJS apps

VSCode

download

https://code.visualstudio.com/

Caption: VSCode

https://code.visualstudio.com/
https://code.visualstudio.com/

Page 4

If you’re using VSCode open it now, click the Extensions button, and in the

search-field enter . Install this useful extension. It will help you

run your ThreeJS apps.

Live Server

Time to get the course resources. Move to the explorer view and click

the text that says clone repository enter this url:

If you don't have Git installed I urge you to install it. Follow this guide https://git-

scm.com/book/en/v2/Getting-Started-Installing-Git

Caption: Installing Git

https://github.com/NikLever/threejs-primer

You’ll be asked to ‘Select a Repository Location’.

The course resources will be transferred to a sub-folder called threejs-primer in the

location you selected. Select open when asked and trust the authors.

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://github.com/NikLever/threejs-primer

Page 5

If you prefer not to use Git then just go to the github address in your browser, there’s a

link in the resources, click the green code button and choose download zip.

You’re all ready for the course.

Let’s review the steps

1. Download VSCode

2. Open VSCode and install the Live Server extension

Unzip to a suitable folder then in VSCode choose and select the

Open option selecting the unzipped folder.

File > New Window

Caption: Using the GitHub Code button

3. Clone or download the course repository.

Page 6

If you need to brush-up your JavaScript then download the free e-book "JavaScript in

12 Easy Lessons"

Before you can start to create ThreeJS apps you’ll need a basic understanding of real-

time 3d and that’s the aim of the next chapter.

To share your student journey with others consider joining my Facebook Group or

Discoord server. Links on the first page of this book.

Caption: JavaScript in 12 Easy Lessons

https://niklever.com/files/js12easy_complete.pdf
https://app.designrr.io/app
https://app.designrr.io/app
https://niklever.com/files/js12easy_complete.pdf

Page 7

2. A 3D Primer
3D graphics is all about representing shapes in a 3D space using a coordinate system.

The renderer in that we will be using is the and so we will

focus, in the course, on the coordinate system used by which looks like this.

ThreeJS WebGLRender

WebGL

Caption: The coordinate system used by ThreeJS' WebGLRenderer

Other coordinate systems are common such as z pointing up but in this e-book y will

always point up. Notice that assuming the viewer is looking down the negative z axis

then the x axis extends to the right, the y axis extends upwards and the z axis points

towards the viewer. This arrangement is sometimes referred to as , East, Up,

South. If the camera was positioned high in the y axis and looks directly down then

the East and South directions are more obvious.

EUS

Page 8

Objects are defined using vertices.

Caption: Looking down the y axis. X is East, Z is South, Y is Up. EUS coordinate system

A single one is called a vertex. It is a vector value. If you are not sure what a vector is,

don’t worry, it’s simple. A vector is simply a group of numbers. A single number is a

scalar, but if we use two numbers together then this is a vector. For a vertex it needs

an x, y and z value and so in ThreeJS terminology it is a Vector3. A vector with three

numeric values.

Caption: Vertices

Page 9

An object is made out of vertices and faces. Suppose we have a cube; this has 8

vertices and 6 faces. Each face has 4 edges. Imagine the top face of this cube has the

vertices v1, v2, v3 and v4. But WebGL only uses triangles. So a cube actually has 12

triangles, each face being two triangles. The top face is v1, v2, v3 and v1, v3, v4.

Caption: Describing geometry

Page 10

A normal is a property that stores the direction in which a face is pointing,

the length of this vector is usual of unit length. That is, it is 1 unit long.

Vector3

And finally, a face will need to describe how it is coloured. Possibly as a simple colour

or it could be by mapping an image onto the face.

Caption: Normals

Caption: Adding an image to a face

Page 11

When an image is mapped a 3d engine needs to know how to place the image on

each face that uses it. To facilitate this a vertex not only has to know the x, y and z

values, it also needs to know the x, y value of the image map. This is usually called the

uv value. This is a , a vector with twovalues. U represents how far left to right

and v up and down. The uv value 0,0, would select the top left corner of the image.

While the uv value 1,1 would select the bottom right.

Vector2

Caption: UV values

Page 12

By carefully selecting the uv values, a 3D artist can map an image onto a complex

mesh.

Caption: UV mapping

In the 3D application, we load in our 3D objects and their materials, then we can

move, rotate and scale them using the ThreeJS library.

You might be relieved to know that we very rarely have to be concerned about the

underlying details of the mathematics that converts this into an image on screen. But

in principle WebGL uses shaders.

Page 13

In general, ThreeJS will do the mathematical heavy lifting. But it is useful to know that

the library uses matrices. A matrix is simply a 2-dimensional array of numbers. When

working in 3d a matrix is usually 4 x 4. ThreeJS uses a matrix for the model that moves

rotates and scales it. Another for the view which takes the cameras position into

consideration. And finally, a matrix that projects this onto the 2D screen.

A shader consists of a vertex shader and a fragment shader. The vertex shader moves

the vertex into the normalized clip coordinates. That is x, y and z are all converted

into values between -1 and 1. ThreeJS has all the shaders you’ll need for most things,

so we won’t be worrying about creating our own shaders in this course.

As well as the vertex shader we also have a fragment shader, this works at the pixel

level. The fragment shader follows the vertex shader and so it already has the vertices

converted into clip-space coordinates. The purpose of the fragment shader is to

determine the colour for the individual pixel.

Caption: A fragment shader

Page 14

The process of taking the 3D data and turning this into a 2D picture is often called the

rendering pipeline and takes this form. So that’s what is happening under the hood.

But when creating web apps using ThreeJS unless you want to start writing your own

shaders you’ll be working principally at the 3D object level. So, you won’t need to

worry about vertices and pixels.

I hope this brief overview gives you an insight into what happens for all 3D apps from

visualizations to games.

But it is time for us to look at creating our first ThreeJS app and in the next chapter

we’ll do just that.

Page 15

3. Setting up a simple THREE.js app
ThreeJS comes in more than one flavour. We’ll be using the modules version

throughout this e-book.

If you’re looking at the folder where you’ve downloaded or cloned the resources, you’ll

see that there is a folder and a folder. To work along with the course,

you need to use the version in the folder, if you’re having trouble then go ahead

and look at the folder the problem is almost certainly a typo.

start complete

start

complete

Caption: VSCode Explorer view

You can’t view your work just by clicking on an html file. That will not work for 99% of

the examples in the course.

The examples in this e-book assume you’re using the Live Server extension in

VSCode. It is very much worth installing.

Page 16

. OK let’s open the file index.html in the folder start/lecture3

This is already setup for you and each example in the resources is going to use pretty

much the same approach. The index page will define a script tag, see above, that is set

to type module, it will import the App class from the file app.js in the same folder as

the index.html file and in the DOMContentLoaded event a new instance of this App

class will be initialised. The window object will have a property called app set to this

instance to facilitate debugging as will inevitably be necessary.

Page 17

When you use modules the import from path must be an absolute or relative path

from the file to the import module. So, in app.js you need to go up 2 folders to reach

the root of the resources then to find the file

three.module.js.

look in the libs/three/build folder

Now let’s look at the app.js file, see above. This is an essentially empty class file. In

this template I have imported the entire ThreeJS library, line 1, which is stored in the

file ../../libs/three/build/three.modules.js this is the same file you will find in the

THREE.js repo in the build folder.

We use an importmap, in the index.html file, to convert the string, , into this

path. I also import OrbitControls, app.js line 2, from

../../libs/three/examples/jsm/controls/OrbitControls.js.

three

A JavaScript class file is defined with a name and then code inside curly braces.

Page 18

Scope is very important when using the keyword . Inside the constructor

method for the App class – refers to an instance of the App. To call methods of

the class we use then the method name. If we do not add to the

method call for an event then inside the function would have a different scope,

it would refer, not to the App instance instead it would be the instance that had the

event listener added, in this case the window. By adding it ensures that

 inside the class method is the App as expected. But you already know that from

the your JavaScript knowledge. This is just a reminder, because if you’re a real

beginner scope is confusing.

this

this

this bind(this)

this

bind(this)

this

Now we’re poised to enter our first code to display some ThreeJS content. Let’s take a

break and come back in the next chapter ready to start typing and testing. See you in

a jiffy.

The constructor method is called whenever a new instance of this class is created.

The constructor method may take any number of parameters or none.

Here, line 5, we have none. The template is setup to create a div element and append

it to the body of the document. It is also setup to call the resize method of this class

whenever there is a window resize event.

Page 19

4. The basis of all ThreeJS apps
In the previous video we reviewed the starting template for your first ThreeJS app. We

reviewed the basics of using modules and JavaScript class syntax. Not all developers

have moved over to ES6 class syntax and modules, so I hope you’ll forgive me for my

brief reminder of this type of coding using JavaScript.

Now we’re ready to create our first app. Open the file app.js in the folder

and in the constructor method we’ll create a virtual camera. When we

imported the ThreeJS library we imported every class by using the wildcard character

and the name, THREE, in caps.

start/lecture4

Each new instance of a class from this library needs to use the name, THREE,

followed by a dot and then the name of the class. We’re going to create a Perspective

Camera. This takes four parameters. In the constructor after the

document.body.appendChild line enter this code:

import * as THREE from 'three';

 this.camera = new THREE.PerspectiveCamera(60, window.innerWidth /

window.innerHeight, 0.1, 100);

Parameter one is a field of view in degrees, here we use 60 degrees. Then the aspect

ratio, because we’re filling the entire window, we use innerWidth divided by

innerHeight. This ensures the models we create aren’t stretched, whatever device

layout you use.

Page 20

A virtual camera has something called a frustum and the viewer will only see objects

that are inside the field of view and the near and far planes, like this.

Parameters 3 and 4 deal with the near and far values of this camera. Any attempt to

render a pixel that is nearer than the near value or further away than the far value will

be ignored.

We can set the position of the camera like this.

Caption: The Camera Frustum

this.camera.position.set(0, 0, 4);

As well as a virtual camera, a ThreeJS app needs an instance of a scene. This takes no

parameters. Like a ThreeJS PerspectiveCamera the base class for a ThreeJS scene is

Object3D.

this.scene = new THREE.Scene();

Page 21

It is a great idea to open the ThreeJS website when developing ThreeJS apps and

games.

Caption: The ThreeJS website

Go to documentation and enter the class name. For a scene, notice Object3D then

an arrow. Clicking Object3D we see that Object3D, is the base class for most objects

in ThreeJS. Because it is a special kind of Object3D a scene will have a children

property that is an Array of child objects. More about this later.

Page 22

We’re going to set the background colour to a mid-grey colour. The colour value is

provided in hexadecimal format. Using 0x tells the JavaScript interpreter to expect a

hexadecimal value. In decimal there are 10 possible numeric values in a column.

Once we get to 9 and increase by 1, then next value takes two columns. Each column

to the left has a value ten times the one to its right. So, in this column the 1 actually

represents 10.

Value 100s 10s Units

 0 0

 9 9

 10 1 0

In hexadecimal there are 16 numeric values. For ten we use the letter A, for eleven B,

up to 15 being F. Using this approach, a single column can represents the values 0

through to 15. Adding one to 15 we roll into the next column. A column is 16 times the

column to its right. This value in hexadecimal isn’t ten it is 16.

Value 16s Units

 0 0

 1 1

 10 A

 15 F

 16 1 0

Page 23

When we define a colour, the first 2 characters after 0x give the value of the red

channel. AA is 10 * 16 + 10, or 170 in decimal. Each colour channel taking a value

between 0 and 255.

FF is 15 * 16 + 15 which equals 255 and is the largest value in hexadecimal using just

two columns. The middle two characters provide the value for the green channel and

the last two the blue value.

Red Green Blue

AA AA AA

Value 16s Units

170 A A

this.scene.background = new THREE.Color(0xaaaaaa);

Enter this code.

Before we can see any content from our ThreeJS scene we need a renderer. ThreeJS

has a number of renderers .

You can optional pass a parameters object to the constructor, here we’re going to set

antialias to true, to reduce the jaggies along edges.

but the one we need for our apps is the WebGLRenderer

this.renderer = newTHREE.WebGLRenderer({ antialias:true });

Page 24

this.renderer.setPixelRatio(window.devicePixelRatio);

 this.renderer.setAnimationLoop(this.render.bind(this));

Slide down to the render method add a call to the render method of the renderer, this

takes the scene as parameter one and the camera as parameter two.

this.renderer.render(this.scene, this.camera);

It’s a good idea to use the renderer method set pixel ratio, this will avoid blurring on

retina screens. Where css pixel density is less than actual physical pixel densities.

And it is essential to set the physical size of the renderer. Here we set the renderer to

the full size of the window using innerWidth and innerHeight. When a WebGLRender

is created, it creates a HTML5 canvas element, with the property name domElement

and we need to add this to the container we created in the App constructor.

The renderer needs to render the scene repeatedly so that changes to the camera

position or objects in the scene are constantly updated. We can set up an animation

loop to do just that. It will take the render method of the app as a parameter, don’t

forget to use bind this to ensure the scope inside the function is the App instance.

Now this method will called around 60 times a second.

 this.renderer.setSize(window.innerWidth, window.innerHeight);

 container.appendChild(this.renderer.domElement);

Page 25

Now if we test this in the browser, You should see a grey screen. It

might seem like a lot of effort to get a grey screen. But there’s actually a lot going on.

Let’s review the code.

using Live Server.

The minimum any ThreeJS app requires is a scene, where we will add objects and

lights. A camera that acts as the viewers position and orientation in the scene. And

you will need a renderer, usually a WebGLRenderer instance.

Code: Complete code for this chapter

Page 26

In the code for this chapter we first created a camera, line 9. In this instance we use a

, so distant objects will appear smaller than close-up objects.

When creating a , you passed parameters to the constructor

method. Parameter 1 is the field of view, the FOV, this is in degrees. The second

parameter is the aspect ratio the width of the window divided by its height. Because

we are using the whole size of the window we can use the and

 properties of the window object. Parameter 3 is the near value and

parameter 4 the far value. Objects nearer than parameter 3 will be clipped and those

further away than parameter 4 will be clipped.

PerspectiveCamera

PerspectiveCamera

innerWidth

innerHeight

Real-time computer graphics uses a virtual cage to define a clipping region. This cage

is called a frustum and although it might be tempting to set near to a tiny value and

far to a massive one. The recommendation is to keep within as small a range as your

scene will require. The renderer uses a special buffer when it builds up the image to

display. This buffer stores the distance away from the camera for each pixel rendered

and it allows nearer objects to mask distant ones. The accuracy of this masking is

determined by the range between near and far. If this range is measured in the

millions when in fact your objects never exceed the range 100 then you are likely to

get rendering errors.

Once the camera is created it will be at 0,0,0, looking directly down the negative z

axis. Recall that WebGL has by default, x increasing to the right, the east, y increasing

upwards and z increasing out of the screen, south. At line 10 we move the camera

back to 4 in the z. Think of it as 4 metres from the origin.

Page 27

After creating the camera we create a scene, line 12. This is easily done and requires

no parameters. By default the background will be white. To alter this we change the

background colour to grey, line 13, using an instance of a ThreeJS class. The

 class can take a hex value to set its value.

Color

Color

Then we create the renderer, line 15. It is an instance of a with

antialiasing set to true. Without setting antialiasing to true the app will suffer from

jaggy. It is important to set the pixel ratio, otherwise there is a danger of blurring on

many devices, line 16. And it is essential to set the size of the renderer, line 17. Here,

because we’re filling the window, we use inner Width and Height of the window

object. When a renderer is created it creates a domElement and this should be added

to the container to ensure it is visible, line 18.

WebGLRenderer

The renderer has a method called that takes a callback. At line 20

we use the class method render and to ensure our scope is the App instance we add

to the reference. The setAnimationLoop is called up to 60 times a

second if the browser can sustain that rate. It is an alternative to using

r .

setAnimationLoop

bind(this)

efreshAnimationFrame

So, now we have the key ingredients of a ThreeJS app, a scene, camera and renderer.

And the renderer is being called many times a second. But grey is a bit boring. In the

next chapter we'll start to add some content to our 3D world.

Page 28

5. Creating a rotating cube

To code-along with this chapter open app.js in the folder start/lecture5

Let’s add an object. Enter

T h is is a te xt p lace h o ld e r - click th is te xt to e d it.

Caption: The code for this chapter running in a browser

 const geometry = new THREE.BoxGeometry();

 const material = new THREE.MeshStandardMaterial({ color: 0xFF0000 });

 this.mesh = new THREE.Mesh(geometry, material);

 this.scene.add(this.mesh);

Page 29

Using the ThreeJS library we create an object that we can see by creating geometry

and a material.

 Here we create a , since we pass no parameters it is 1 unit wide,

high and deep.

We’ll look at the other geometries that we can create using the library

in a later chapter. Box

 this.mesh.rotateY(0.01);

We create an instance of a type of material called , this is quite

a sophisticated material and we’ll learn more about it later in this book. For now we

simply set its colour value. Using , we have the maximum value applied to

the red channel, FF and minimum to both the green and blue channels, each set to

00. Consequently the material is red.

MeshStandardMaterial

0xFF0000

Now we have geometry and a material we can create a , this takes the geometry

as parameter one and the material as parameter two.

all we see is a Black square. To prove this is actually 3D. Let’s add some code to the

render method. Enter

 Mesh

If we save and use Live Server

Caption: Cube appears as black square

Page 30

Save and let Live Server refresh.

const ambient = new THREE.HemisphereLight(0xffffff, 0xbbbbff, 0.3);

 this.scene.add(ambient);

 const light = new THREE.DirectionalLight(0xFFFFFF, 3);

 light.position.set(0.2, 1, 1);

 this.scene.add(light);

Here we create an ambient light, one that illuminates not based on location or

position. A has a different color for surfaces that pointing up, they’ll

be hit by a white light, FFFFFF. But surfaces pointing down, get a bluey gray coloured

light hitting them. We control the intensity of this light with the third parameter, here

it is set to 0.3. For the light to affect the scene it must be added to the scene.

 HemisphereLight

Now you can see it looks more 3D. But it’s still black, it should be red, what’s gone

wrong? The reason is simple. In our scene there are no lights. Let’s add some, just

after the scene is initialised add

Caption: Cube rotating

Page 31

As well as the ambient light we’ll add a directional light. This type of light points from

its position to the origin, 0,0,0, or a target object if one is assigned. By moving it to

0.2, 1, 1, we can control the direction in which the light points. For the light

Now it is looking like a rotating red cube. But there are a couple more things to do

before you go. At the moment the user cannot interact with the page at all. Using an

 instance it is very easy to allow the user with a mouse or touch event

to rotate the scene. Just enter

OrbitControls

const controls = newOrbitControls(this.camera, this.renderer.domElement);

Now dragging with the mouse rotates the view of the scene.

There is still a little problem to address. If we resize the window then the renderer

does not resize. We need to add some code to the method. Enterresize

 this.camera.aspect = window.innerWidth / window.innerHeight;

 this.camera.updateProjectionMatrix(); this.renderer.setSize(

 window.innerWidth, window.innerHeight);

We update the camera aspect ratio and by so doing we need to update the projection

matrix and we adjust the renderer size.

Now resizing the window causes the renderer to resize. Try commenting out the

 line to see its effect.updateProjectMatrix

Page 32

Can you change the rotation of the cube so it rotates around the x axis not the y axis?

Nice easy one. Just a case of changing rotateY to rotateX.

I hope you can see how easy the ThreeJS library is to use and how flexible. In the next

chapter we’ll look at a great online tool for you to use that will help you learn about

the library.

Page 33

6. The ThreeJS editor
Now you know the basics of a ThreeJS web app it’s time to learn more. A really useful

tool for learning is the ThreeJS editor. Open the , remember that is

. Probably time to bookmark this important resource.

ThreeJS website

threejs.org

In the group of links at the top left is the

editor link. This opens an online tool that

lets you play around with nearly the

entire ThreeJS library without writing a

single line of code.

Caption: The ThreeJS Editor

https://threejs.org/
https://threejs.org/

Page 34

Step 1
The best way to learn is to play along as I describe the steps. So hopefully you now

have the editor open in your favourite browser and you can switch to the editor and

do each step. OK, here goes

Caption: The completed project

We’re going to create a simple scene with the Earth rotating and add a Moon that is a

child of the Earth. That means as the Earth rotates the Moon moves with it.

Page 35

Caption: Editor layout

But before we do that lets just take a look at the interface. The main area is the 3D

view. This will show you the camera view. At the top is a standard tool bar with various

options. At the side is a tabbed control which shows the various inspectors for Scene,

Project and Settings. We’ll mainly be using the Scene tab. But for now, click the

Project tab and enter ‘Earth and Moon’ as the project name. Leave the other details at

the default.

Page 36

Step 2
Now click Add in the top tool bar. Notice the different

object types you can add. We’ll be looking in detail at

these in a later chapter. For now, choose Sphere.

This will add a Sphere. You’ll see that it is

black.

Page 37

Find the Sphere in the Scene objects list. Using

the Object tab, click the name ‘Sphere’ and

change it to ‘Earth’.

Notice that the object is positioned at 0 in the x, y

and z and has rotation 0 in the x, y and z axes.

Can you remember which direction is which? If the

camera is not rotated then x is left and right, y is

up and down, and z is forward and backward.

Now switch to the Material tab. Scroll down to the

bottom and click the Wireframe checkbox. The

Sphere switches from solid black to a wireframe

render. Now you can

clearly see the number of triangles being used to create this

shape. Unclick the checkbox to go back to a solid black

render.

Page 38

Step 3
You might think that solid black is a bit

boring. But if you have been looking

carefully you’ll see from the Material tab

that Color is set to white.

So why is it showing as black? The answer is you

are using a type of material that uses lighting,

but you have no lights in your scene. Before we

add a light try changing the material type to

MeshBasicMaterial.

 Instantly the sphere is shown as white. But it doesn’t look

very 3D. That is because MeshBasicMaterial doesn’t use

lighting. Switch it back to MeshStandardMaterial.

Page 39

Now go up to the tool bar and choose

. Add>DirectionalLight

That’s much more 3D. In the Object tab

you can see the Position of the light. Given

that the only thing that is important about

a DirectionalLight is the direction, why

have a position. That is because ThreeJS

uses two things to decide the direction for

a , its position AND its

target. By default, the target will be the

location [0,0,0]. But you could assign an

object to be the target.

DirectionalLight

Finally set intensity to 3.

Page 40

Step 4
Click on the sphere and choose the Material tab. We are now going to assign a texture

to the sphere. Click on rectangle to the right of the Map checkbox. You will see a file

selector. Now we need the resources that you

downloaded at the start of this book. Navigate to the

folder . complete/lecture6

In there, select the earth.jpg file. At first you will

see no change to the 3D view. But if you click the

checkbox for the Map you will see the grey

sphere become a reasonable representation of the earth.

Page 41

Step 5
Make sure the Earth object is in the

Scene pane. Switch to the SCRIPT tab.

Click the NEW button.

Give it the name Earth and click the EDIT

button.

Between the curly braces, enter

this.rotation.y += 0.1; Because we have

the earth selected the keyword

refers to the earth object. All ThreeJS

objects have a rotation property. Here we

are adding 0.1 to the y component of this property. This will cause the Earth to spin

around its y axis.

this

Switch to the PROJECT tab. Press the PLAY

button. You'll see the Earth object is

spinning very fast. Click the STOP button.

Changing the 0.1 to 0.01 makes for a more

suitable rotation.

Page 42

Step 6
Add another Sphere, select it in the

Object list and using the Object tab

change its name to ‘moon’.

Then using the red arrow, drag the moon

to the right.

Now switch to the Material tab and set

the Map to moon.jpg from the resources

folder we used earlier.

Finally the moon should be smaller than

the earth under the Geometry tab change

the radius to 0.3.

Page 43

Step 7
If you drag the Moon over the Earth in the

Scene object list, the moon becomes a

child of the earth and will inherit its

motion. Try dragging the earth now.

 Notice that the moon moves with it.

When we press PLAY the moon appears

to orbit the earth as the earth spins on its

y axis. This is the effect of the child-

parent relationship.

Page 44

Step 8
Finally change the background colour to

black by clicking the colour bar to the right

of the word Background.

Page 45

Step 9
Now we’re going to Publish our work. Select

the PROJECT tab and press the PUBLISH

button. The ThreeJS editor bundles the

project into a zip file.

Find the file in the Downloads folder and

unzip it to your development folder and

launch the file with

. And there you have your earth

and moon scene animating in all its

glory.

index.html Live

Server

The ThreeJS editor really helps when you are learning the library. You can see what

happens when you adjust the properties of objects in your scene. In the next chapter

we are going to look at creating various different geometries in code.

This is a great way to get started with ThreeJS and you can get a scene ready for the

web with an absolute minimum of code.

Page 46

7. Geometries
that to see an object via the renderer it is

usually a object, there are exceptions to this, such as Line segments and

Particles. But the main visible object you will see in a ThreeJS scene will be a .

We also learnt that when a new instance is created it takes a geometry

parameter and a material parameter. We’ll look at materials in the next chapter, but in

this chapter, we will focus on the different geometries you can generate just using

the library. Later in the book we’ll look at using external programs to create meshes,

but at this stage we’ll look at the ones you can create with just the library code.

We found in the third chapter of this book

Mesh

Mesh

Mesh

The geometry classes included with the library are the primitives

 and there are several classes that will construct geometry such as

 and All the details for using the

primitives are on the in the documentation section. So rather than going

through them all let’s look at just a couple. Then move to the construct options which

are more difficult to understand and use.

Box, Circle, Cone,

Cylinder, Dodecahedron, Icosahedron, Octahedron, Plane, Sphere, Tetrahedron,

Torus, TorusKnot

Edges, Extrude, Lathe, Parametric, Shape, Text Tube.

website

https://threejs.org/

Page 47

Take a look at start/lecture7, for the starting template for this chapter. It is essentially

the same as lecture5.

The only thing we will change is the geometry used when creating the . Just

replace with , or or any of the list of geometries to

see a default example rotating.

Mesh

Box Circle Icosahedron TorusKnot

If you feel that the circle is too facetted then just take a look at the documentation to

see that a instance can take up to 4 parameters. CircleGeometry

Page 48

The first is the radius which defaults to 1, then the number of segments. So, entering

1, 64 will give a smoother circle. If you want a half circle, then enter 0 as the third

parameter and Math.PI as the fourth. Parameters 3 and 4 give the starting and ending

angles when generating a circle. By default, the starting angle is 0, which is the

equivalent of the x axis and the default end angle is 2 π which is again the x axis. 2π is

a full revolution in radians. By setting parameter 4 as just π we get a half circle.

You might be wondering why the circle disappears as it rotates. By default, only front

facing triangles are rendered by the renderer, so as the circle rotates and shows it’s

rear to the camera the renderer ignores these faces. Eventually it rotates around

enough to start showing the front facing triangle again.

Caption: TorusKnot

Play around with the different geometries and check the documentation to

customise them.

Page 49

Once you’ve had a play, it’s time to think about constructive geometries and we’ll look

at the class. This takes a instance and extrudes it along the

z axis. The class requires two parameters a and a settings object.

ExtrudeGeometry Shape

Shape

Comment out the first geometry line and uncomment the other. Notice the

 method is currently empty. We need to add some code. Enter: createStarGeometry

 createStarGeometry(innerRadius=0.4, outerRadius=0.8, points=5){

 const shape = new THREE.Shape();

 const PI2 = Math.PI * 2;

 const inc = PI2/(points*2);

 shape.moveTo(outerRadius, 0);

 let inner = true;

 for(let theta=inc; theta<PI2; theta += inc){

 const radius = (inner) ? innerRadius : outerRadius;

 shape.lineTo(Math.cos(theta)*radius, Math.sin(theta)*radius);

 inner = !inner;

 }

 const extrudeSettings = { steps: 1, depth: 1, bevelEnabled: false };

 return new THREE.ExtrudeGeometry(shape, extrudeSettings);

}

That will take some unpicking. First the . A instance has and

 methods. The idea is to draw a shape in the XY plane. Here we draw a five

pointed star.

Shape Shape moveTo

lineTo

Page 50

We define an and for the star and then set an value

which is the angle to move by when drawing each line. Then we move the current

point of the shape to (, 0).

innerRadius outerRadius inc

outerRadius

In a loop we increment an angle until it exceeds . In other words from the

angle up to a complete revolution. We set a property alternating between

 and then draw a line to () times .

for theta 2π

inc radius

innerRadius outerRadius cos ø, sin ø radius

Caption: Creating a star shape 1

Page 51

Then we define a simple extrudeSettings object, saying we want to span the entire

length in a single step and that the depth of the extrusion is 1 unit. We set to

false. If you look at the you can see how would work. Now we

have a rotating object that has a star shaped cross section.

bevel

documentation bevel

() will be on the perimeter of a circle of radius 1, multiplying these values

by the or , we first draw a line from the outer to the inner

radius having rotated by .

 cos ø, sin ø

 innerRadius outerRadius

inc

Then we draw a line to outer radius having again rotated. Repeating this 10 times we

have a star shape.

Caption: Creating a star shape 2

https://threejs.org/docs/index.html?q=extr#api/en/geometries/ExtrudeGeometry

Page 52

When you’re ready it’s time to play around with materials.

Go ahead and play with the other ways you can construct geometry using ThreeJS

classes.

Caption: The extruded star shape

Page 53

8. Materials
Each you create can have a different or share materials with other

meshes.

 The first material we’ll use is , this type of material takes a

colour value and paints every pixel where the mesh shows this colour. It takes no

notice of lights in the scene. Try changing the colour value and reviewing the results.

Remember colour values are a hexadecimal value. Where A represents 10, B – 11 up to

F – 15. The first 2 digits in the value give the red component, the second 2 the green

and the last 2 the blue. A value of FF is actually 15*16 + 15. 0xFF0000 means

maximum red and minimum green and blue.

Mesh Material

To code along with this video go to the folder start/lecture8 and open the file

app.js. MeshBasicMaterial

Caption: An example of using MeshBasicMaterial

Page 54

The simplest material that supports lighting is . The Lambert

model of lighting calculates the lighting at the vertex and then interpolates this value

across the triangle that is being rendered. Regardless of the complexity of a mesh, it is

actually made up of lots of triangles and a renderer works on each triangle when

building up the final image. Because lighting calculations are at the vertex level,

Lambert lighting cannot show specularity, shiny bright points of light. To show the

TorusKnot mesh using Lambert lighting simply change to

. You don’t need to do anything else.

MeshLambertMaterial

MeshBasicMaterial

MeshLambertMaterial

If you want to see specular highlights, then it is time to use the MeshPhongMaterial

class. Change Lambert to Phong. When using Phong shading, if you want a shiny

appearance then you will need to add some options to the object passed to the

constructor.

Caption: An example of using MeshLambertMaterial

Page 55

 const material = new THREE.MeshPhongMaterial({ color: 0x00FF00, specular:

0x444444, shininess: 60 });

Now the mesh appears shiny.

Caption: An example of using MeshPhongMaterial

Page 56

But the material that is most commonly used these days is the

. This is very complex. To achieve a shiny result you need to

adjust the roughness and metalness values. A great way to review the properties of

the material classes is to enter material in the documentation search box.

MeshStandardMaterial

threejs.org

Caption: An example of using MeshStandardMaterial

If we look at the page for by clicking on the name in the left

column’s search results list then we see a ThreeJS app running on the page that

includes a dat.GUI panel allowing you to dynamically manipulate the properties of the

material.

MeshStandardMaterial

https://threejs.org/

Page 57

The panel is split between material and

, this is not

because the mesh has 2 materials. It is

because the class

extends the base class of . All

ThreeJS classes are extensions of the class and here you can see the

properties that are common to them all.

MeshStandardMaterial

MeshStandardMaterial

Material

Material Material

Notice if you set nothing happens until you set to true. Check

what happens with the and options. Because a has

triangles hidden by other triangles in the same . Using both and

 is essential. ensures each rendered pixel saves the distance

from camera for that pixel to the depth buffer. decides whether when

rendering a pixel to check the depth buffer and only paint the pixel if the current

distance of this pixel from the camera is less than what is already saved in the buffer.

Try changing the side option, notice that choosing shows the inside of the

. Now open the panel and adjust and

 to see how they behave.

 turns the smooth surface into

a facetted one and wireframe changes

the render to an outline version.

opacity transparent

depthTest depthWrite TorusKnot

Mesh depthTest

depthWrite depthWrite

depthTest

BackSide

Mesh MeshStandardMaterial roughness

metalness

flatShading

Page 58

A can have several textures applied try playing with them.

envMaps control how the surface reflects and refracts light. replaces the color

with a texture, allows you to control the roughness of the surface

using a texture. If using an , a texture defining the transparency of the

surface, remember to set to true. Otherwise nothing will happen.

MeshStandardMaterial

Map

roughnessMap

alphaMap

transparent

Using Geometries and Materials to create Meshes is at the heart of a ThreeJS scene.

But sometimes primitive and constructive geometries are not enough and you will

want to load a geometry that you have either created or found online. That’s where

loaders come in and we’ll review them in the next chapter.

Page 59

9. Loaders
Before we start to look at the code you’ll use when loading complex objects or scenes.

Let me first give a plug to the site where I got the assets for this video. has

lots of 3D models many of which are excellent.

SketchFab

3D assets come in many different formats and when working with ThreeJS one of the

best formats to use is a glb file, a binary version of the format. This format is a

relatively new one and to be honest you’re really unlikely to come across assets in

this format.

GLTF

Blender is a great tool to edit and export assets and it is super easy, when

using Blender, to export an asset as a glb file, check-out my YouTube videos, link in

the resources.

Caption: Sketchfab.com

https://sketchfab.com/
https://en.wikipedia.org/wiki/GlTF
https://www.blender.org/

Page 60

Once you have a glb file I recommend using Don McCurdy’s excellent online

. You simply drag your glb onto the screen to see it in its full glory. If the

glb includes animation it will be playable, it is a very useful tool for ThreeJS

developers.

gltfViewer app

Caption: blender.org

Caption: The GLTF Viewer

https://gltf-viewer.donmccurdy.com/

Page 61

To work along with this video open . This is the starting template.

I’ve added the required imports, you’ll need the class. Other than that it is

a boiler-plate template, creating a scene, renderer and camera and adding a couple of

lights. Hopefully, this is starting to look quite familiar.

start/lecture9/app.js

GLTFLoader

The first thing we’ll do is add a progress bar. I created a simple class for this, and it is

already added as an import. To use it simply add

 this.loadingBar = new LoadingBar();

in the constructor method.

If you view the page now it will include a loading bar. It doesn’t do anything, we’ll need

to add code in the loader to update the bar as the asset loads.

Now add

 this.loadGLTF();

The app already includes an empty method called .loadGLTF

Let’s add some code to the method. First we create an instance of a

GLTFLoader and set the path it will uses to find the assets.

loadGLTF

 const loader = new GLTFLoader().setPath(‘../../assets/’);

Page 62

The asset we are loading is compressed to make the file size smaller, so we need to

add a DRACOLoader. This class needs a path to the decoding library files. Now we

have an instance of the DRACOLoader we use the set DRACOLoader method of the

GLTFLoader instance to assign the draco loader.

 const dracoLoader = new DRACOLoader();

 dracoLoader.setDecoderPath('../../libs/three/examples/jsm/libs/draco/');

 loader.setDRACOLoader(dracoLoader);

The key method of a loader is the load method. This takes up to 4 parameters.

Parameter 1 is the url of the file. Since I’ve added a path to the loader using the

setPath method, this is just the file name. Then a callback when the file is loaded and

parsed, parameter 3 is a progress callback and parameter 4 an error handler.

 loader.load(

 // resource URL

 'motorcycle.glb',

 // called when the resource is loaded

 gltf => { },

 // called while loading is progressing

 xhr => { },

 // called when loading has errors

 err => { }

);

 }

Page 63

The onload callback, parameter 2, receives an object that contains several elements,

the one we use here is the scene, adding this to the app scene object. Then we hide

the loading bar and start a rendering loop. We set the gltf.scene property to the app

property motorcycle so that it can be rotated in the render method.

onProgress, parameter 3, receives a object, which includes loaded

and total values, by dividing loaded by total we get a value that ranges between 0 and

1 and is used to update the loading bar progress property. This sets the amount that

the grey lozenge is filled by the blue bar. Indicating to the user the amount that has

been loaded.

XMLHttpRequest

onError, parameter 4, just sends the err parameter to the console.

 }

 gltf => {

 this.motorcycle = gltf.scene;

 this.scene.add(gltf.scene);

 this.loadingBar.visible = false;

 this.renderer.setAnimationLoop(this.render.bind(this));

xhr => {

 this.loadingBar.progress = (xhr.loaded / xhr.total);

 },

Page 64

When loading a gltf asset the loader uses for the materials.

Because of this you should the environment for the ThreeJS scene property. The

method does this for you.

MeshStandardMaterial

setEnvironment

And that’s all there is to loading a complex asset. A word of warning though. The scale

of your asset maybe very different to your expectation and if you can’t see anything

when you use this method with your own assets then it is time to start tracking down

the problem.

At the start of the onLoad callback. Parameter 2 of the load method, enter:

Caption: The loaded asset

Page 65

const bbox = new THREE.Box3().setFromObject(gltf.scene);

 console.log(`min:${bbox.min.x.toFixed(2)}, ${bbox.min.y.toFixed(2)},

${bbox.min.z.toFixed(2)} - max:${bbox.max.x.toFixed(2)},

${bbox.max.y.toFixed(2)},$ {bbox.max.z.toFixed(2)}`);

The method of a , calculates the axis aligned bounding box

around an object and its children. It is useful way to get a rough feel for scale.

setFromObject Box3

Once initialized a instance has and properties. These are

instances. We create a console log string using , this rounds the value to

just two decimal places. Making it much more readable. Save and refresh and we can

see that in this example the values are in the range + or – 0.04 to 0.11, if you find

yours are in the range + or – 10000, then the camera positioning needs to be

radically changed or you need to use the property to scale the size of the

 object to a more suitable value.

Box3 min max Vector3

toFixed(2)

scale

gltf.scene

In this chapter we used our first complex 3d asset. In the next we’ll look at using

assets that include animation.

Page 66

10. Animation
The Three.JS animation system is superb it echoes the animation system used by

 and . In this video we’re going to get a knight, moving. The knight was

prepared using the 3D content creation tool and the great online resource

, check to a video describing the technique on my .

The file has four different animations and over the next few minutes I’ll

show you how to get the Three.JS library to use them.

Unreal Unity

Blender

Mixamo this link YouTube channel

knight.glb

Caption: Editing a 3D asset using Blender

Let’s start with the template open app.js from the folder start/lecture10. Essentially

this is the same as the previous video. We setup a scene, camera and renderer.

Because we’re loading a glb file we load an environment map.

https://www.youtube.com/watch?v=wiiSIHvIlNw&t=57s
https://www.youtube.com/@NikLever

Page 67

First up the onload callback. At the heart of the animation system is the

AnimationMixer class, updating this will cause any animations that have been added

as actions to the mixer to move the desired part of a skinned mesh or just move an

object. The AnimationMixer class takes a single parameter, the root object that any

animations will be applied to. Here we set the knight object which is the gltf.scene.

We’ll be adding code in three places one in the onLoad callback for the glb file, two

adding some code to a setter function and finally adding some code to the render

loop.

this.mixer = new THREE.AnimationMixer(this.knight);

 Eventually we want to be able to switch animations simply by using the setter

function action. To allow for this we want to collect all the animations in the gltf file

and store them as named properties of an object. We create an object and a names

array then iterate over each animation in the gltf property animations. The

GLTFLoader class parser creates an animations array as well as the scene property. We

grab the name of each animation in the array, we use the name clip because the

Three.JS animation system thinks of these as instances of the AnimationClip class. To

avoid issues over the case of the name string we convert it to lower case. Push it to

the names array and store the clip as the name property in the animations object.

Now we can access it using just the name. An alternative is to use the static method

THREE.AnimationClip.findByName on the gltf animations array. But I prefer the

hashed object route.

Page 68

To launch the first animation, we’ll use the action setter we are yet to write. The

animation we’ll use first is look around.

 this.animations = {};

 const names = [];

 gltf.animations.forEach(clip => {

 const name = clip.name.toLowerCase();

 names.push(name);

 this.animations[name] = clip;

 })

 console.log(`animations: ${names.join(',')}`);

Finally in this function we’ll setup a simple ui to allow us to switch animation. The GUI

class let’s us do this very easily. Just create an options object, it needs a single

property, name. Create an instance of GUI and add a control. The add method has

many alternatives here we use three parameters: options, name, and the names

array. By using the names array, GUI will populate a dropdown with each string from

the names array as options. We also add an onChange handler, this callback will get

the name string selected from the dropdown. All we need to do is set the action

setter to this value and once we’ve added the code to this method it will blend the

current animation to the newly selected one.

this.action = 'look around';

Page 69

Time to create the action code. In the code we’re going to store the animation name

that is currently playing as actionName. The first thing we’ll do is check if we are

trying to set the action to the one currently playing, if we are then we return from the

method without doing anything.

 const options = { name: 'look around' };

 const gui = new GUI();

 gui.add(options, 'name', names).onChange(name => {

 this.action = name

 });

 set action(name){

 if (this.actionName == name.toLowerCase()) return;

 ...

Notice we consistently use the lower case version of the name. Now we get the

animation from the animations object we created earlier by using the name. If this

 exists then we convert this into an using the

 method clipAction.

AnimationClip AnimationAction

AnimationMixer

 const clip = this.animations[name.toLowerCase()];

 if (clip!==undefined){

 const action = this.mixer.clipAction(clip);

 ...

Page 70

An uses the as its data, but extends this to include

time, the rate to play the what to do about looping when the time

property exceeds the duration of the clip. Using the mixer you can blend multiple

AnimationActions and when doing this you can use the weight property of an

 to add emphasis to a clip. In this example we’re only using a single

action at a time.

AnimationAction AnimationClip

AnimationClip and

AnimationAction

By default an AnimationAction is set to loop indefinitely.

 if (name=='die'){

 action.clampWhenFinished = true;

 action.setLoop(THREE.LoopOnce);

 }

 ...

One of the animation actions is die and this should not loop, we check for the name

‘die’. If we find this then we set clampWhenFinished to true and the loop property to

LoopOnce. This ensures that the knight character stays on the floor when the die

animation completes.

Since we want to be able to start and restart our animations we call the reset method.

This method sets paused to false, enabled to true, time to 0, interrupts any scheduled

fading and warping, and removes the internal loop count and scheduling for delayed

starting.

Page 71

The Three.JS animation system allows us to fade in an animation which we want to

do as long as the current action is not die. If the knight is lay flat on the ground we

want to simply switch to the new animation. We use the variable nofade to handle

this. Having tested for the previous action we can now store the new action name

and set the action to play. If we have a curAction and nofade is true then the

curAction is disabled. If nofade is false then we set curAction to crossFadeTo the new

action over half a second. Finally we store the new action as curAction so we can

setup disabling or cross fades later.

 action.reset();

 ...

 const nofade = this.actionName == 'die';

 this.actionName = name.toLowerCase();

 action.play();

 if (this.curAction){

 if (nofade){

 this.curAction.enabled = false;

 }else{

 this.curAction.crossFadeTo(action, 0.5);

 }

 }

 this.curAction = action;

 }

}

Page 72

If you run the app now you’ll be disappointed, no animation will show. We need to

add a little code to the animation loop method, render.

The clock instance allows us to get the time that has elapsed since we last called

getDelta. We need to tell our AnimationMixer that it needs to move any

animationactions on by this timed amount. Easily done just call the update method

passing the dt value.

 if (this.mixer) this.mixer.update(dt);

Now you see the knight animating and you can easily switch animations.

Try commenting out the line to see its effect and the

line.

clampWhenFinished setLoop

Caption: The knight character animating

Page 73

That completes this short introduction to this great library. I look forward to seeing the

apps you create now you know the basics. Thanks for completing the course.

The Three.JS animation system is very versatile.

Page 74

11. Where to from here
Now you know the basics of using the ThreeJS library you might like to know I have a

number of courses that can take you further on your journey.

The Beginners Guide to 3D Web

Game Development with ThreeJS

Learn to write JavaScript code while

having fun making 3D web games using

the most popular Open Source WebGL

library ThreeJS

Learn to Create WebXR, VR and

AR, experiences with ThreeJS

Learn how to create VR and AR

experiences that work directly from the

browser, using the WebXR and our

favourite Open Source WebGL library,

Learn GLSL Shaders from Scratch

Learn how to harness the power of the

GPU in your web pages by learning to

code GLSL shaders.

https://www.udemy.com/course/beginners-3d-web-game-development-with-threejs/?referralCode=B22E3315F32B1A1C7EEF
https://www.udemy.com/course/beginners-3d-web-game-development-with-threejs/?referralCode=B22E3315F32B1A1C7EEF
https://app.designrr.io/app/ThreeJS%20https://www.udemy.com/course/learn-webxr/?referralCode=E7D0C9ABEA96B4DE37E4
https://app.designrr.io/app/ThreeJS%20https://www.udemy.com/course/learn-webxr/?referralCode=E7D0C9ABEA96B4DE37E4
https://www.udemy.com/course/learn-glsl-shaders-from-scratch/?referralCode=A99DDDC6F6FA22C15C17
https://www.udemy.com/course/learn-glsl-shaders-from-scratch/?referralCode=A99DDDC6F6FA22C15C17

Page 75

Create a 3D Multi-Player Game

using ThreeJS and SocketIO

Learn how to use nodeJS, socketIO and

ThreeJS to create a 3d multi-player game

Create a 3D Car Racing Game with

ThreeJS and CannonJS

Learn to combine the physics engine

CannonJS and ThreeJS to create a fun car

racing game Create a 3D RPG Game with

ThreeJS

Create a 3D RPG Game with ThreeJS

Learn how to harness the ThreeJS library

to create a 3D RPG game

https://www.udemy.com/course/create-a-3d-multi-player-game-using-threejs-and-socketio/?referralCode=B5C9FA9846DE9D25738D
https://www.udemy.com/course/create-a-3d-multi-player-game-using-threejs-and-socketio/?referralCode=B5C9FA9846DE9D25738D
https://www.udemy.com/course/create-a-3d-multi-player-game-using-threejs-and-socketio/?referralCode=B5C9FA9846DE9D25738D
https://www.udemy.com/course/create-a-3d-rpg-game-with-threejs/?referralCode=D17C7A2D4578859E5E02
https://www.udemy.com/course/create-a-3d-rpg-game-with-threejs/?referralCode=D17C7A2D4578859E5E02

The Three.JS Primer

Three.JS is the most popular library for displaying 3D content in a

browser, even a smartphone browser!

This e-book begins with a beginner-level primer to real-time 3D concepts and

some basic examples to get you started with the most important features that

Three.JS has to offer.

 ■ You'll find out how to use the online Three.JS Editor.

 ■ You'll learn about geometry and materials.

 ■ How to load a complex model and how to animate your models.

This is a quick introduction to the most important features of the library. After

completing the examples, you will have a basic understanding of how to use

Three.JS in your own Web Apps.

