
Nicholas Lever

JavaScript in
12 easy lessons

A beginners guide to modern JavaScript

Nik Lever

JavaScript in 12 easy lessons

1
JavaScript in 12 easy lessons

JavaScript in 12 easy lessons
Nik Lever

JavaScript in 12 easy lessons

2
JavaScript in 12 easy lessons

Table Of Contents

 JavaScript in 12 easy lessons 1

 1. Introduction 3

 2. Lesson 1 - Variables 5

 3 Lesson 2 - Strings 13

 4 Lesson 3 - Functions 18

 5. Installing VSCode and downloading the course resources 24

 6. Lesson 4 - Conditions 30

 7. Lesson 5 - Arrays 42

 8. Lesson 6 - Objects 46

 9. Lesson 7 - Loops 51

 10. Lesson 8 - Classes 57

 11 Lesson 9 - Modules 64

 12. Lesson 10 - Scope 69

 13. Lesson 11 - Math 79

 14. Lesson 12 - JSON 88

 15. What you've learnt 97

 16. About the author 101

JavaScript in 12 easy lessons

3
JavaScript in 12 easy lessons

1. Introduction
JavaScript is the most popular programming language in the world.

Diagram 1.1 – Programming language popularity

JavaScript, often abbreviated to JS, is the default language of the internet. But it doesn’t
stop there, JavaScript powers your smart tv, works with the internet of things, and helps
build cross platform apps. VSCode, the program we’ll use in this course to write the JS
code, is written using JS.

Because JS is the default language of your browser, you can start to write JS code
without installing any programs, you can just use your browser. Making JavaScript the
easiest programming language for new coders. Having learnt the language, you can
then more readily lend your skills to another coding language such as Python, Java or
C++.

JavaScript in 12 easy lessons

4
JavaScript in 12 easy lessons

You’ll be pleased to know that JavaScript is easy to learn. If you do one lesson a day,
they vary in length from 10 minutes to an hour, then you will have a good grounding in
the basics of coding.

Most of my coding has been for online games and you’ll �nd a slant in the course
towards solutions that suit game developers. But essentially the concepts apply to all
developers.

JavaScript is super versatile, and you’ll soon be using it to add cool dynamic elements
to your web pages.

With JavaScript you’re empowered to handle any aspect of app design. Often apps
have front-end coding, the bit the user sees. JavaScript is ideal for that. But now with
software called Node.js you can also use JavaScript to write the back end. Interacting
with databases to deliver data to your user.

The most popular delivery format for data even has JavaScript in the name, JavaScript
Object Notation (JSON) is the go-to standard for data exchanges on today’s internet.

An increasing number of businesses and organizations rely on software for sales and
production. Many using JavaScript as the principal language. There is a corresponding
increase in demand for developers who are familiar with JavaScript. There’s a shortage
of good JavaScript developers, so you have increased demand in conjunction with a
de�cit of quali�ed people. The average salary in the USA for a JavaScript developer is
over six �gures.

If you’re looking to become a programmer who can always be assured of a stable
career and get well compensated for it, then you want to learn JavaScript. In this book I
show you how.

JavaScript in 12 easy lessons

5
JavaScript in 12 easy lessons

All web pages that include client-side scripting, that is scripting that happens inside the
user’s browser, use JavaScript. In this book I hope to get you up to speed with writing
JavaScript code. Writing code is great fun and the more you practice the better you’ll
get. I wrote my �rst computer program using a punch card device back in 1969 and I’m
still learning new stuff every day.

The basic building block of all programming languages is the variable. Don’t just read
the words, open your Chrome browser. I recommend Chrome for this course. Then press
F12. If you forget the keyboard short-cut you can also press the triple dot button at the
top right, then select More Tools>Developer Tools.

Diagram 2.1 – Opening Chrome Developer tools

You’ll get a new window open. Select the Console tab.

2. Lesson 1 - Variables

JavaScript in 12 easy lessons

6
JavaScript in 12 easy lessons

Diagram 2.2 – Using the console to enter code

Beside the greater than symbol, where the cursor is �ashing enter

let x = 3

Then press enter, ignore the unde�ned that just means there is no value returned by this
code. But you have created a little part of your computer’s memory that you can access
using the name x.

Enter

x

Now it shows the number 3. That is because the variable x has the value 3. Sometimes
it’s confusing about variable names and variable values. If it helps think of a pigeonhole
system. Each pigeonhole has a name and inside each pigeonhole a number is stored. If
we look in the pigeonhole named x the number 3 is stored there.

JavaScript in 12 easy lessons

7
JavaScript in 12 easy lessons

Diagram 2.3 – Thinking of a variable as a pigeonhole

Let’s store a new value at the pigeonhole y, enter

let y = 5

Again, we get unde�ned. Why’s that? Yes, assigning a variable does not return a value.
What happens if we enter

x + y

You get 8, because adding together x and y does return a value. It is 3 + 5 which is 8.

What is y – x?

Yes, it is 2, because 5, y’s value, minus 3, x’s value, is 2.

Enter

let result = x + y

JavaScript in 12 easy lessons

8
JavaScript in 12 easy lessons

Variable names do not have to be a single letter. A variable name can contain letters,
digits, underscores, and dollar signs. To see the value of result just enter result. It has
the value 8. 3, x’s value plus 5, y’s value.

A variable is called a variable because it can vary. Enter

x = 12

Now the value in the x pigeonhole is 12 not 3.

Diagram 2.4 – Current values in the pigeonholes

Has this changed the value of result? Click the little eye icon and we’ll add a live
expression, enter result.

JavaScript in 12 easy lessons

9
JavaScript in 12 easy lessons

Diagram 2.5 – Adding a live expression

Now we can constantly see what the value result is. And it is still 8. Because once the
value is set it will stay that way until it is updated. Even though it was set as x + y, it
isn’t tracking those variables. To update it we need to enter

result = x + y

once again. Now we get the value 17, x=12 plus y=5.

There is another way to declare a variable, in fact there are two other ways. Let’s take
them in order enter

const z = 7

By using const and not let, we create a variable that cannot be changed. The
pigeonhole has a locked glass door, we can see the value, but we can’t change it.

JavaScript in 12 easy lessons

10
JavaScript in 12 easy lessons

Diagram 2.6 – x, y and z in pigeonholes

Try entering

z = 8

You get an error message. ‘Assignment to constant variable’. Constants can make your
code more robust ensuring values that shouldn’t change can’t be changed.

I mentioned there is another way to declare a variable and that is to use var. In this
course we won’t be using var at all, it is the old school way of de�ning a variable and
we’re using the latest approach to use let and const.

So far, our variables have just been integer values, that is whole numbers. A variable
can be a decimal value. Like let w = 4.78. Or it can be a word or a sentence. Enter

let myName = "Nik Lever"

JavaScript in 12 easy lessons

11
JavaScript in 12 easy lessons

Use your own name, and make sure to enter double quotes at the start and end. This
type of variable is called a string and can be very useful. But what happens if we add
together myName and x, a string and a number?

Because myName is a String the plus operation doesn’t try to convert myName to a
number, instead it converts x into a String and joins this on the end of myName, giving

Nik Lever12

Now a little challenge.

Can you create 3 variables, �rstName, lastName and fullName?
When creating fullName use the variables �rstName and lastName and put a space between
them. Put the book down and give it a try.
Don’t turn to the next page until you’ve tried the challenge.

JavaScript in 12 easy lessons

12
JavaScript in 12 easy lessons

For my name it will be

let firstName = "Nik"
let lastName = "Lever"
let fullName = firstName + " " + lastName

To check enter fullName to see its value.

Notice I used a capital N for name. Throughout the course I will be using what is called
camel case. Camel case is the practice of writing phrases without spaces or
punctuation, indicating the separation of words with a single capitalized letter, and in
this course the �rst word will start with a lower-case letter.

Don’t worry if you didn’t get this right. The more practice you get the more likely you are
to become an expert. In the next chapter we’ll look at the things you can do with Strings.

JavaScript in 12 easy lessons

13
JavaScript in 12 easy lessons

When you create a string in JavaScript it is converted into a data type called a string
object. An object in JavaScript can not only store data, it can also be used to
manipulate the data. What do I mean by that? Well, it has a series of properties and
methods that we can use. An example of a property is

sentence.length

By using dot length, we get the value 44. That is the number of characters in the
sentence, ‘The quick brown dog jumped over the lazy dog’.

An example of a method is

sentence.startsWith('The')

Now we’re asking if the string we’ve called sentence, starts with the string ‘The’. We get
the answer True. True and False are special kinds of number, called a Boolean, we’ll see
much more of them later. What happens if we use a lower-case T? You can repeat a
previous entry by pressing the up arrow. Now we get the answer false.

The string object has lots of methods, one lets us convert each letter to lower case.

sentence.toLowerCase().startsWith('the')

Now we get true. See how we can chain together the methods. Here, up to the �rst dot,
sentence starts with an upper-case T. Then we use the method toLowerCase, so after
the second dot the string now starts with a lower-case t. When we ask if sentence starts
with the, with a lower case t, the answer is true.

let sentence = 'The quick brown fox jumped over the lazy dog'

In the previous video you met the special kind of JavaScript variable called a String. You
created a string by surrounding a word or sentence with double quotes. But you can
also use single quotes.

3 Lesson 2 - Strings

JavaScript in 12 easy lessons

14
JavaScript in 12 easy lessons

Often in code, you’ll want to search through a string to see if it has a particular
sequence of characters. As well as startsWith, there is also endsWith.

sentence.endsWith('dog')

Is true, but

sentence.endsWith('lazy')

is false

What if the word you’re searching for is in the middle of the string. Then you can use
includes.

sentence.includes('fox')

The answer is true. In programming speak we say the method returns true.

What if we want to know where the word ‘fox’ is in the sentence? Then we use

sentence.indexOf('fox')

Which returns 16, if we start from the beginning and count the letters, including the
spaces, We �nd ourselves on the space before the word fox. That is because the �rst
letter isn’t index one, it is index zero. We can show it in the console using

sentence[0]

That shows the single character at position zero. If we swap the zero to 16, we get the f
at the beginning of fox.

We can add another string to the string using +=

sentence += ". If the dog barked was it really lazy?"

+= is the same as sentence = sentence + '. If the dog barked was it really lazy?'

JavaScript in 12 easy lessons

15
JavaScript in 12 easy lessons

When we used the method indexOf, we included the word ‘fox’ in the brackets. All
methods use brackets, it sets them apart from a property such as length that doesn’t
need brackets. The word we supplied is called a parameter. We’ll meet parameters a lot
in the course. The indexOf method is most often used with a single parameter like this,
but we can use a second parameter. The sentence now has two examples of the word
‘dog’. If we use

sentence.indexOf('dog')

Then we get the return value 41. Which is the position in the string of the �rst ‘dog’.
Suppose we want to �nd the position of the second ‘dog’. Then we add a second
parameter, set to one more than the value previously returned. If the second parameter
is 41 then the return value is 41. We’re setting the position in the string to start the
search from, and it �nds the word ‘dog’ immediately. If instead we set it to 42, then the
return value is 53. This is where we �nd the second ‘dog’.

sentence.indexOf('dog', 42)

Sometimes we need to extract part of a string. For that we can use the method
substring.

sentence.substring(53) >> "dog barked was it really lazy?"

This will return everything in the string sentence, from the character at position 53.

Just like indexOf, we can use two parameters. If we do the second parameter is the end
index, where to stop accessing the string sentence. What value should we use to get the
value ‘dog’ return? Put the book down and try it for yourself. Don’t turn the page until
you’ve tried it.

JavaScript in 12 easy lessons

16
JavaScript in 12 easy lessons

Yes, 56 is the value to add.

sentence.substring(53, 56)

Diagram 3.1 Using substring

We can access a sub string from the sentence using a different method, slice. At �rst it
seems identical to substring.

sentence.slice(53, 56)

Where it differs is when we use minus values for parameters.

sentence.slice(-5, -1)

Returns 'lazy', because a minus parameter will start at the end of the string and count
backwards. Do this with the method substring and you get an empty string returned,
because all parameter values below zero are changed to zero. So

sentence.substring(-5, -1)

Becomes

sentence.substring(0, 0)

JavaScript in 12 easy lessons

17
JavaScript in 12 easy lessons

With a start and end index of zero we get no characters returned.

Now that you know about variables it’s time to start thinking about programming. In the
next chapter you’ll take your �rst steps.

JavaScript in 12 easy lessons

18
JavaScript in 12 easy lessons

Having provided the function de�nition then we enter an opening curly brace. At this
stage we’ve entered the area where we add our JavaScript code. If the function returns a
value, then we use the keyword return. This can optionally be followed by JavaScript
code. When the running program encounters the word return, it will exit the function and
return to wherever the function was called. The function must have a closing curly
brace.

A few examples will help enormously.

function multiply(a, b){
 return a * b;
}

In programming we use an asterisk to specify multiplication. And we end each line with
a semi-colon. Now if we enter

multiply(2,3)

we get the answer 6. By entering 2 as the �rst parameter inside the function the
parameter a will have the value 2. The second parameter is 3, so inside the function the
parameter b will have the value 3. The function returns the value of a times b, which in
this case is 2 times 3 or 6.

When we create a function in JavaScript, we use the keyword function followed by the
function name, then an opening bracket. If we’re using parameters then we enter them
now, parameters are like variables, we supply a name. If we have more than one
parameter, then we separate the parameters using commas. Once we’ve listed all the
parameters, we enter a closing bracket. The keyword function, the function name and
the brackets containing optional parameters are called the function de�nition.

A function is a series of lines of code in a block. You call a function by providing the
name of the function followed by brackets. Sometimes you will provide values between
the brackets, these are called parameters. A function can optionally return a value.

4 Lesson 3 - Functions

JavaScript in 12 easy lessons

19
JavaScript in 12 easy lessons

If instead we enter

multiply(12, 7)

we get the answer 84. Now a is 12 and b is 7. a times b is now 12 times 7 or 84.

Diagram 4.1 – Introducing functions

When we create a function, we’re creating a block of code statements that do a useful
job and that we can reuse many times. We’ve met functions already in the course. The
methods used by the String object, toLowerCase, startsWith, indexOf etc. are all
functions.

In programming you will often �nd that angles are in radians not degrees. A full
revolution in radians is 2π. Let’s create a function that will convert degrees to radians

function degToRads(angle){
 const pi = 3.1416;
 return angle / 180 * pi
}

Notice here we have more than one JavaScript code line. A function can have many
lines and may call other functions as it executes. Notice we use a forward slash for the
division operation. Asterisk for multiplication and forward slash for division.

JavaScript in 12 easy lessons

20
JavaScript in 12 easy lessons

Since a full revolution should be 2π, a half revolution should be π. Enter

degToRads(180)

Here 180 is a half revolution in degrees and the function returns the approximate value
for π that we used in the function.

Diagram 4.2 – Using the degToRads function

What happens if we just enter the function name, we get the function itself returned, not
the result of its execution.

Diagram 4.3 – Returning the function

JavaScript in 12 easy lessons

21
JavaScript in 12 easy lessons

Notice inside the function that we created the constant pi. What happens if we enter pi.
Do we get the value 3.1416? No, we get an error – ‘Uncaught ReferenceError: pi is not
de�ned’. That is because the constant pi only exists for code inside the function, it is
described as local to the function. We’ll learn more about this, it’s called scope, in a later
lesson.

Now you have learnt about functions ,can you create a function that will convert a
distance in miles to a distance in kilometres?
A little tip, you need to multiply by 1.609 to get an approximate answer.

Put the book down and give it a try.
Don’t turn the page until you’ve attempted this challenge.

JavaScript in 12 easy lessons

22
JavaScript in 12 easy lessons

My answer is

function milesToKilometres(dist){
 return dist * 1.609;
}

If we enter

milesToKilometres(5)

We get 8.045. Perhaps it is a bit too precise. Suppose we only want a single number
after the decimal point. A Number is another JavaScript object. Just like a string the
Number object has several methods. One is a function that will convert the number to a
string with a speci�ed number of digits following the decimal point.

Enter func and choose the function de�nition from the list. Now you can edit it.
Surround dist * 1.609 with brackets and add

(dist * 1.609).toFixed(1);

Now if you enter

milesToKilometres(5)

the answer is “8.0”. Notice the double quotes surrounding the value, the return value is
now a String. We want it to be a Number. So, we edit the line again like this

Number((dist * 1.609).toFixed(1));

The JavaScript execution will start with

dist * 1.609 = 8.045

Then we convert 8.045 into a string rounding the value to a single decimal place.

(8.045).toFixed(1) = "8.0"

JavaScript in 12 easy lessons

23
JavaScript in 12 easy lessons

Finally using Number we convert this String value back into a numeric value.

Number("8.0") = 8

Now you know about variables and functions. As your code becomes more complex
you need a programming text editor and we'll look at that in the next chapter.

JavaScript in 12 easy lessons

24
JavaScript in 12 easy lessons

Diagram 5.1 – Download VSCode

Having installed the application. We need to grab the code for this course. Use the main
menu, View>Command Palette … . In the search panel type ‘git’. A list of options that
include the word Git, appear. Choose ‘Git Clone’. In the input panel enter

https://github.com/NikLever/JavaScriptLessons

Shoot over to and install the application for your desktop.https://code.visualstudio.com

So far, we’ve used Chrome and the Developer Console to write our JavaScript code. But
this means any code you write is lost when you refresh the page. Typically, JavaScript
is written using a <script> tag in a html page or as a entirely separate �le with the
extension dot js. To write the html or js �les we need a text editor. While you can use
Notepad on windows or TextEdit on a Mac. For the rest of this course, I recommend
VSCode.

5. Installing VSCode and downloading the
course resources

https://github.com/NikLever/JavaScriptLessons
https://code.visualstudio.com/

JavaScript in 12 easy lessons

25
JavaScript in 12 easy lessons

Diagram 5.2 – Git Clone

You’ll be asked where you want the downloaded �les to be placed. Choose a folder, the
course �les will be placed in a sub-folder, named ‘JavaScriptLessons’, inside the folder
you choose. Once downloaded you’ll be asked if you trust the authors of the �les in this
folder. Choose yes.

Diagram 5.3 – Trust panel

JavaScript in 12 easy lessons

26
JavaScript in 12 easy lessons

Diagram 5.4 – Explore screen

At this stage you should have a screen like the one shown in Diagram 5.4. Select the
button at the top left to explore the folders and �les in the resource repository you’ve
just installed. Viewing the �les in a browser requires one more step in VSCode. We need
to install an extension. Find the Extensions button. It is in the toolbar with the Explore
button and features 4 squares with the top right square offset from the others.

In the search bar enter ‘live’. Find the entry ‘Live Server’.

JavaScript in 12 easy lessons

27
JavaScript in 12 easy lessons

Diagram 5.5 – Adding the Live Server extension

In the right-hand pane choose install.

Diagram 5.6 – Installing Live Server

JavaScript in 12 easy lessons

28
JavaScript in 12 easy lessons

The last step is to �nd the �le index.html using the Explore screen. Now right-click this
�le and choose Open with Live Server.

Diagram 5.7 – Opening a �le in Live Server

Your default browser will open showing this index page.

Diagram 5.8 – The default index.html page for the course

JavaScript in 12 easy lessons

29
JavaScript in 12 easy lessons

You’re all set to carry on with the course. Great work.

JavaScript in 12 easy lessons

30
JavaScript in 12 easy lessons

To work along with this video, I want you to open the �le index.html in the folder
start/lesson4. This is a very simple html page. I’m assuming you have some familiarity
with HTML. An HTML page has a series of tags. A tag starts with a name inside less
than greater than brackets and ends with the same name inside the same style of
brackets only including a forward slash. Tags can be nested inside other tags. Here we
have html as the outer tags. Inside the html tag is a head tag and a body tag. VSCode
allows you to expand a tag. Something that can be useful as the code becomes more
complex.

Notice the resources includes a complete and a start folder. For every example in the
course the code along version is in the start folder and if you get stuck there is a
complete version in the complete folder.

Diagram 6.1 – The course �les

If you open VSCode and open the workspace for this course and select the Explorer
button. The top one on the left, you should see a �le layout like this.

Hopefully you followed all the steps in the previous chapter and have VSCode installed,
and you cloned the repository for the course. If you haven’t then jump back and follow
the steps to be ready to code along with this lesson.

6. Lesson 4 - Conditions

JavaScript in 12 easy lessons

31
JavaScript in 12 easy lessons

Before we enter any code, I’d like to show you how to view the pages. As we saw in the
previous chapter, you should have the Live Server extension installed. If you haven’t
done this step, go back to the previous chapter and complete this step. Find index.html
at the root of the resources. Right-click and choose ‘Open with Live Server’.

In the browser you should be looking at the default index.html page. For this lesson
select lesson2_4/start. You’ll be totally unimpressed since all you’ll see is a white
screen. Bear with me here it will get better. Rome wasn’t built in a day as they say. Now
open the developer console. Remember the keyboard short cut? F12 to open Developer
Tools, then select the Console tab. Now we’re ready to enter some code.

Over in VSCode between <body> and </body>, add a script tag.

<script>

VSCode will automatically add the closing tag. Later in the course we’ll use separate
�les for the JavaScript but in this lesson, we’re going to add our code to the index.html
page, for this the code must be in a script block.

We’re going to enter a new function; we’ll call it ‘compare’ and it has two parameters, a
and b.

function compare(a, b){
}

Now the condition, this lesson is called conditions, and this is our �rst condition. We
use the keyword, if, followed by brackets. What we enter inside the brackets must
evaluate to a Boolean. Hold on, evaluate, Boolean, what does that mean? It means
whatever we enter inside the brackets has to be either true or false. As an example, enter
a is less than b. Angle brackets left is the less than operator. Following the closing
bracket, we enter curly braces. Strictly speaking, if we only have a single line following
the brackets then we don’t need curly braces. But I highly recommend you always use
them.

function compare(a, b){
 if (a<b){
 }
}

JavaScript in 12 easy lessons

32
JavaScript in 12 easy lessons

Inside the curly braces enter

console.log('a is less than b');

The complete code should now look like this

<script>
 function compare(a, b){
 if (a<b){
 }
 }
</script>

Remember to save your work. Then back in Chrome, let Live Server refresh the page and
enter

compare(10, 20)

If you entered the code correctly you should get the response

a is less than b

In the console. What just happened? You wrote your �rst real JavaScript code. When
you entered compare(10, 20). a is 10 and b is 20. The program reaches the line

if (a<b)

It reads this as

if (10<20)

10 is less than 20, so the statement inside the brackets is true and so the program
moves to inside the curly braces. This prints the line a is less than b in the console.

Fine, but what if we enter

compare(20, 10)

JavaScript in 12 easy lessons

33
JavaScript in 12 easy lessons

Now a is greater than b and so we don’t get a response in the console. We just get
unde�ned because the function does not return a value.

When we have an if condition we can add a block of code that happens when the
condition is false. To do that we use the key word else. Then curly braces and this time
in the curly braces enter

console.log('a is greater than b')

The complete code is now

<script>
 function compare(a, b){
 if (a<b){
 console.log('a is less than b');
 }else{
 console.log('a is greater than b');
 }
 }
</script>

Save the �le, refresh the browser and enter

compare(20, 10)

Again. This time you see ‘a is greater than b’. But what if we enter

compare(10,10)

JavaScript in 12 easy lessons

34
JavaScript in 12 easy lessons

Again, we get a is greater than b, but a equals b. Why do we see the message a is
greater than b? Because a is not less than b so the condition a<b in the brackets
evaluates to false and execution jumps to the else block. We can �x this. As well as if
and else blocks we can add an else if block like this. Before the else add an else if,
notice the space between the words else and if. Now we can enter a new condition
between brackets and a new code block between curly braces. In the condition enter

a==b

The complete code is now

<script>
 function compare(a, b){
 if (a<b){
 console.log('a is less than b');
 }else if(a==b){
 console.log('a equals b');
 }else{
 console.log('a is greater than b');
 }
 }
</script>

Notice in the new condition we have two equals signs. This is not a mistake. In
JavaScript and many other programming languages two equals signs means we’re
testing for equality. Whereas a single equals sign means we’re assigning a value to the
variable on the left of the equals sign. Despite looking similar they are not the same at
all and this is a common cause of bugs in code. Mistakenly using a single equals when
double equals was required.

If you save your work and go back and refresh the browser. Now when you enter

compare(10,10)

JavaScript in 12 easy lessons

35
JavaScript in 12 easy lessons

You’ll get the response ‘a equals b’

What if we try to use a value that isn’t a number? JavaScript will try to convert the value
to a number.

compare("10", 10)

Will be �ne.

But for

compare("ten", 10)

You’ll get ‘a is greater than b’. Not because a is greater than b, simply because a is not a
number, so the JavaScript processor cannot evaluate a<b or a==b and so these
conditions are evaluated as false.

At the start add a new condition

if (isNaN(a)){
 console.log(‘a is not a number’);
}else

isNaN is a built-in JavaScript function that tests if a value is not a number. For a string
that can be converted to a number the function will return false. But if it cannot be
converted the function returns true, the value is not a number.

JavaScript in 12 easy lessons

36
JavaScript in 12 easy lessons

<script>
 function compare(a, b){
 if (isNaN(a)){
 console.log('a is not a number');
 }else if (a<b){
 console.log('a is less than b');
 }else if(a==b){
 console.log('a equals b');
 }else{ console.log('a is greater than b');
 }
 }
</script>

You know the form save, let Live Server refresh the browser, enter

compare("ten", 10)

Now we get ‘a is not a number’

But we can still get an erroneous message if b is not a number.

Can you �x this? You’ll need to add a new else if condition and code block. Put the book
down now and give it a try. Don’t turn the page until you’ve tried.

The compare function now looks like this

JavaScript in 12 easy lessons

37
JavaScript in 12 easy lessons

You add

else if (isNaN(b)){
 console.log('b is not a number');
}

Giving

<script>
 function compare(a, b){
 if (isNaN(a)){
 console.log('a is not a number');
 }else if (isNaN(b)){
 console.log('b is not a number');
 }else if (a<b){
 console.log('a is less than b');
 }else if(a==b){
 console.log('a equals b');
 }else{ console.log('a is greater than b');
 }
 }
</script>

Save, refresh and enter

compare(10, "ten");

Now we get

b is not a number.

Now we have four conditions and a catch all else. That is about the limit for using if.

There is another way of choosing a variety of options and that is to use switch.

After the closing curly brace of the compare function, enter

JavaScript in 12 easy lessons

37
JavaScript in 12 easy lessons

function today(){
 const day = new Date().getDay();
}

Here we create a Date object, we need to use the new keyword to create an instance of
the Date object. If you create a Date object using no parameters, notice the empty
brackets, then it will be initialised to the current date and time. A Date object has several
methods, here we use the getDay method. This returns a number between 0 and 6, 0
means today is Sunday, 1 Monday all the way up to 6 meaning the day is Saturday.
Now we have a numeric value we can use it to display a message indicating the day in
English. We start with the keyword switch and then in brackets add the value we’re
using for the switch. Then we add case blocks. Case 0 followed by a colon, then one or
more lines of code, here we just have a console log message. A case block ends with
break, when the processor reaches break, it jumps out of the switch statement.

switch(day){
 case 0:
 console.log('Today is Sunday');
 break;
}

Can you add the remaining 6 case blocks? Put the book down and give it a try. Again try
not look at the next page until you’ve tried this challenge.

JavaScript in 12 easy lessons

39
JavaScript in 12 easy lessons

Hopefully that wasn’t too hard.

 function today(){
 const day = new Date().getDay();
 switch(day){
 case 0:
 console.log('Today is Sunday');
 break;
 case 1:
 console.log('Today is Monday');
 break;
 case 2:
 console.log('Today is Tuesday');
 break;
 case 3:
 console.log('Today is Wednesday');
 break;
 case 4:
 console.log('Today is Thursday');
 break;
 case 5:
 console.log('Today is Friday');
 break;
 case 6:
 console.log('Today is Saturday');
 break;
 default:
 console.log('getDay returned
 value out of range');
 break;
 }
 }

Notice I also added a catch all default block, this will be used when no case block is
true. Now save, refresh browser and enter

today()

You get the response ‘Today is …” with whatever day it currently is.

JavaScript in 12 easy lessons

40
JavaScript in 12 easy lessons

Try to use a switch statement when an if else if else block has more than 3 or 4
conditions. It isn’t always possible. It all depends on the problem.

There is one other use of conditions that I’d like to point out and that is the conditional
operator. This is a short-cut version of an if else statement. It is used when we are
assigning a value and it can take one of two different results based on a condition. An
example will make it clear.

Let’s create a function that will return a string saying if today is a weekend day or not.
We’ll get the day index as before using the Date object and the method getDay. Looking
at the today function we can see that a weekend day means day is either 0 or 6. We
enter return followed by brackets containing a more complex condition than we’ve met
so far.

function weekend(){
 const day = new Date().getDay();
 return (day==0 || day==6);
}

Here we have 2 conditions joined by vertical lines. The two vertical lines means logical
or, here we join day==0 and day==6 with an or operation. That means if either day==0
or day==6 is true, then the whole condition is true. Here is a table showing how it works
for these two inputs

Table 6.1 – A truth table for determining if today is a weekend day

The column to the left shows the possible values for day==0 and the top row the
possible values for day ==6. Notice if day==0 is true, row 2, and day==6 is false, column
3, then the result is true. Only row 3, column 3 gives a false value, when both day==0
and day==6 are both false. We’ll meet more logical operators as the course progresses.

JavaScript in 12 easy lessons

41
JavaScript in 12 easy lessons

function weekend(){
 const day = new Date().getDay();
 return (day==0 || day==6) ? "It's the weekend" :
 "It's not the weekend"
}

Save, refresh browser and enter

weekend()

The return string you get depends on the day you are watching this video.

Conditions are widely used in programming to control the �ow of the program.

Now you know about variables, functions and conditions. Next up are Arrays, a special
kind of variable that can be very useful.

Now we enter a ?, the �rst thing after the ? will be the return value if the condition is true.
If day is equal to 0 or 6. Then we enter a colon and �nally the return value if the
condition is false, day does not equal 0 or 6.

JavaScript in 12 easy lessons

42
JavaScript in 12 easy lessons

7. Lesson 5 - Arrays
Arrays are a great way to keep lots of data in a list. To code along with this lesson in
VSCode open index.html from the start/lesson5 folder.

You create an Array just like you create a variable. An array is just a special kind of
variable. Unless you plan to keep recreating the Array then I recommend always using
const for an Array variable. To create the Array just use square brackets.

const planets = [];

Now we have an Array. But the array doesn’t contain anything. A JavaScript array has a
property length that returns the number of items in the Array. Save your work, go back to
Chrome and navigate to lesson5/start. Now enter

planets.length

This returns 0.

Let’s add some items. Here each item is a string, but we can mix-up items in an array,
we can have any data type as an item.

const planets = ["Mercury", "Venus", "Earth",
"Mars", "Jupiter", "Saturn", "Uranus"];

If we go save our work, go back to Chrome, refresh and enter

planets.length

Now the answer is 7. If you know your planets, you’ll realise I’ve missed one out. Not a
problem, we can add an item to the end of the array, even though the variable we’re
using is a constant.

planets.push("Neptune");

Let’s create a console log that displays the number of planets in the solar system.

JavaScript in 12 easy lessons

43
JavaScript in 12 easy lessons

console.log('There are ' + planets.length + ' planets in our
Solar System');

Back in Chrome refreshing the browser and we get this message. See how by adding
Neptune using push, planets.length is now 8.

When you have an array, you can access a single item using square brackets and an
index value. Just like the �rst character in a string is index 0, so to the �rst item in an
array is index 0, so despite the fact that we’re the third rock from the sun, to get the item
‘Earth’ we use index 2.

console.log("Our planet is " + planets[2]);

If we save and refresh, we now get two statements about the planets.

Diagram 7.1 – Planet facts

If we add another item to the end of the array using the method push and another
console message.

planets.push("Pluto");
console.log('Until 2006 there were ' + planets.length + '
planets in our Solar System');

Save and with live reload enabled with Live Server, we see another fact.

JavaScript in 12 easy lessons

44
JavaScript in 12 easy lessons

Diagram 7.2 – More planet facts

As well as adding an item using push, we can remove the last item from an array using
pop.

const pluto = planets.pop();
console.log('In 2006 ' + pluto + ' was declassified as a
planet. Now there are ' + planets.length + ' planets');

Great work. As the course progresses, you’ll see more things you can do with arrays. A
key feature is the ability to access an item in an array using an index value. Recall in the
last lesson we used a switch – case statement to display the current day as an English
string. A much nicer technique is to use an array. The Date object has a method
getMonth that returns an index from 0 to 11. Can you create a function, called month,
that returns the current month as an English name? You’ll need to create an array of
months, get the current month index, then use this to return the right item from the
array. Put the book down and give it a try. If you’re a complete beginner with
programming and JavaScript, it might seem quite hard. But there is no substitute for
practice.

JavaScript in 12 easy lessons

45
JavaScript in 12 easy lessons

First, we create the function de�nition, that’s just the function keyword and the name of
the function followed by brackets. We have no parameters to pass to the function so
that completes the de�nition.

function month()

The content of the function goes in curly braces. Now we create an array, we’ll call it
months. Remember we de�ne an array using square brackets. Then we list each month,
these are all strings so each item goes inside double quotes, you can optionally use a
single quote, the apostrophe character. Each item is separated from the previous item
using a comma. Now we get the month id by creating a new Date object, no parameters
are included so the Date will be set to today’s date and the current time. Then we use
the getMonth method. At this stage the constant variable monthId will be a value
between 0 and 11. All that remains is to return the item months[monthId]. The item in
the array at the index month id.

function month(){
 const months = ["January", "February", "March", "April",
"May", "June", "July", "August", "September", "October",
"November", "December"];
 const monthId = new Date().getMonth();
 return months[monthId]
};

Save and allow Live Server to reload. Admire all the interesting facts about the planets
once more, then enter

month()

And the current month will be displayed in English. If you’d prefer a different language,
then simply replace the content of the months array with the names of the months in
your preferred language.

Arrays are very important in programming. Another important data type is an object and
we’ll look at them in the next lesson.

JavaScript in 12 easy lessons

46
JavaScript in 12 easy lessons

8. Lesson 6 - Objects
You’ve learnt about variables and arrays already. Imagine you have a game where there
are lots of non-player characters, NPCs. You want to be able to store information about
them. Power, weapon, strength and damage for example.

We could store this as lots of individual variables. NPC1Power, NPC1Weapon,
NPC1Strength, NPC1Damage, NPC2Power, NPC2Weapon, NPC2Strength, NPC2Damage
etc. But, one of the really great things about JavaScript is just how easy it is to create a
data structure that stores data in just the way you like it. If you’re new to programming,
then you won’t understand how useful this is. Trust me it is. Instead of using four
variables to store the data for each NPC, we can create an object that stores the
variables in a single structure.

Like this

{ power: 0.5, weapon: "sword", strength: 1.2, damage: 0 }

We use curly braces and name-value pairs. A name value pair is separated using a
colon.

Open index.html from the folder start/lesson6 to code along with this lesson. Let’s
create a function that will generate an object like this. It’s a function so we use the
function keyword. We’ll call the function createNPC. The �rst thing we’ll do is generate a
power value, it will take a value between 0.5 and 1. So far in the course we’ve met the
Date object. Another vital object is the Math object. This has many useful methods; we’ll
meet two of them as we create this function. The �rst method is random. This returns a
pseudo random number between 0 and 1. The number could be any decimal value in
this range. But we want a number in the range 0.5 to 1. So we multiply this value by 0.5,
now we have a number in the range 0 to 0.5. This is still not what we want, we need to
add 0.5, to move the range to 0.5 to 1. If this is confusing, imagine that Math.random
returned 0.8, we multiply this by 0.5, now the value is 0.4, then we add 0.5 to get 0.9,
that’s in the target range. What if Math.random returned 0.1, we multiply by 0.5, getting
0.05, then we add 0.5 to get 0.55, again in the range 0.5 to 1. Math.random is a great
method to use for random assignment of object properties.

function createNPC(){
 const power = Math.random() * 0.5 + 0.5
};

JavaScript in 12 easy lessons

47
JavaScript in 12 easy lessons

Next, we create an array of weapons. Then we select a weapon at random using this
array. How do we do that? If we use Math.random() times weapons.length we’ll get a
value between 0 and weapons.length. Actually it will always be just less than
weapons.length, because Math.random never returns 1, it can return 0.99999, but never
1. With Math.random time weapons.length we have a decimal value, but to select an
item from an array we need an integer value. We wrap the code inside another Math
method, �oor. This returns the integer part of a decimal value. So, Math.�oor(2.85)
equals 2 and Math.�oor(1.289) returns 1. Now we have a value that depending on the
return value of Math.random returns one of the integer values 0,1,2,3. If the value is 0
then weapon will be set to ‘sword’, if its 1 weapon will be ‘pistol’, 2 – ‘axe’ and 3 –
‘spear’.

function createNPC(){
 const power = Math.random() * 0.5 + 0.5;
 const weapons = ["sword", "pistol", "axe", "spear"];
 const weapon = weapons[Math.floor(Math.random() *
weapons.length)]
};

Can you set strength? We want a value in the range 1 to 3. Use Math.random, a
multiplier and add a value. Put the book down now and give it a try.

JavaScript in 12 easy lessons

48
JavaScript in 12 easy lessons

It will be Math.random() * 2 + 1.

function createNPC(){
 const power = Math.random() * 0.5 + 0.5;
 const weapons = ["sword", "pistol", "axe", "spear"];
 const weapon = weapons[
 Math.floor(Math.random() * weapons.length)];
 const strength = Math.random()*2 + 1.0;
}

Damage is even easier, we simply default it to zero.

function createNPC(){
 const power = Math.random() * 0.5 + 0.5;
 const weapons = ["sword", "pistol", "axe",
"spear"];
 const weapon = weapons[
 Math.floor(Math.random() * weapons.length)];
 const strength = Math.random()*2 + 1.0;
 const damage = 0;
 }

Creating an object from these values is just a case of entering curly braces then listing
them separated by commas. This will be the same as using these name value pairs.

function createNPC(){
 const power = Math.random() * 0.5 + 0.5;
 const weapons = ["sword", "pistol", "axe", "spear"];
 const weapon = weapons[
 Math.floor(Math.random() * weapons.length)];
 const strength = Math.random()*2 + 1.0;
 const damage = 0;

 return { power, weapon, strength, damage };
 }

This function will return an object like this

{ power: 0.5, weapon: "sword", strength: 1.2, damage: 0 }

JavaScript in 12 easy lessons

49
JavaScript in 12 easy lessons

We can create an array to hold our NPCs. Unsurprisingly we’ll call it npcs. Then to add
an npc to the array we use push, with the function call in brackets. This is going to call
the function createNPC which returns an npc object, this is pushed onto the end of the
array. If we repeat this 3 times, we should have an array of npcs.

const npcs = [];

npcs.push(createNPC());
npcs.push(createNPC());
npcs.push(createNPC());

Save your work, if Live Server is running, you can view the page using this url
http://127.0.0.1:5500/start/lesson6/index.html

Enter

npcs.length

You’ll get the response 3.

Now enter

npcs[0]

If you press the little arrow you can see more clearly the 4 properties of the �rst npc in
the array.

JavaScript in 12 easy lessons

50
JavaScript in 12 easy lessons

Diagram 8.1 – Viewing the npc properties

If we’re just interested in what weapon the �rst npc has we use

npcs[0].weapon

or to get the power value of the second npc we use

npcs[1].power

Everything about each npc is encapsulated in the single object. Just as we did with the
string object, we use a dot to separate the object from the property. Later in this section
you’ll see how you can even add your own custom methods.

Let’s look back on what you’ve learnt so far in this course.

First you discovered variables. Then you learnt about functions. You learnt how your
code can branch in different directions using conditions. You learnt to keep lots of
variables in a list using arrays and now you know about keeping lots of variables
together in an object. With arrays you access an individual item using an index value
and with an object you use a property name.

Often in code you will want to repeat a section of code several times. Like in this lesson
where we repeated creating npcs. Rather than just pasting the same code three times
like we did here, much better to use loops and that’s what we’ll do in the next lesson.

JavaScript in 12 easy lessons

51
JavaScript in 12 easy lessons

9. Lesson 7 - Loops
You’re becoming a real programmer now. Remember in the previous lesson we created
3 NPCs. But we did it by copying the line and pasting it in two more times. In this lesson
we’ll look at methods to loop through code automatically.

The most common method is to use for. To code along open index.html from the
start/lesson7 folder. You might be surprised to see this is where you got to in the
previous video. I want you to delete two of the npcs.push lines.

Now before the remaining npcs.push line add for then brackets, followed by an opening
curly brace. With the closing curly brace after the npcs.push line.

<script>
 const npcs = [];
 for(){
 npcs.push(createNPC());
 }

 function createNPC(){
 const power = Math.random() * 0.5 + 0.5;
 …

So far so good. But if you try and run it now, you’ll get an ‘Unexpected token’ error. That’s
because we are expected to enter something in the brackets after the for keyword. What
we enter for a for statement is positively weird. Rather than a typical set of parameters
that you pass to a function, separated by commas. Instead, we enter 3 JavaScript
statements. As such they are separated by semi-colons, just like you should end every
JavaScript statement line. You enter three statements and each one, in order has a
different purpose. The �rst is executed just once, before we run the code inside the curly
braces, the second statement is a condition, while it evaluates to true the loop will
repeat. The �nal, the third statement is executed every loop, after the code inside the
curly braces has run. So what do we enter to cause the code block inside the curly
braces to be executed 10 times. Creating 10 npcs.

JavaScript in 12 easy lessons

52
JavaScript in 12 easy lessons

First we de�ne an index variable, we use let not const because we are going to be
updating this variable. The second statement is a condition, we want to check if i is less
than 10. Finally we want to add one to the variable i each time the code block executes.
JavaScript has a short cut method for adding one to a number. We use plus plus. You
might have seen there is a programming language called C++ and this is meant to
indicate that it is the next iteration of the C programming language.

<script>
 const npcs = [];
 for(let i=0; i<10; i++){
 npcs.push(createNPC());
 }

Let’s go over that again. This code means. Create a variable called i that is initialized to
zero. We test if i is less than 10, it is, so the code inside the curly braces is executed.
Then the �nal statement in the for de�nition is executed. The variable i is incremented
by 1. Now i equals 1. The processor checks if i<10, it is, we run the code inside the curly
braces and then add one to i. i now equals 2, we repeat until i equals 10, this is not less
than 10. So, we jump out of the for loop.

If we save and visit start/lesson7. Remember you can right-click
start/lesson7/index.html and select Open with Live Server. Or if Live Server is running
enter in the browser address bar. Or
use the root index.html page with Live Server, this allows you to return to the index page
after a lesson. You would select Lesson 7>Start using this option. Whichever method
you choose make sure the console is open by pressing F12 and selecting the console
tab.

http://127.0.0.1:5500/complete/lesson7/index.html

Enter

npcs.length

The response is 10. Great work.

http://127.0.0.1:5500/complete/lesson7/index.html

JavaScript in 12 easy lessons

53
JavaScript in 12 easy lessons

While a for loop like this is perhaps the most common form for looping there are other
options. We can reform the loop using while. First, we de�ne the loop variable
commonly called i for iterator. Then we enter while. While has a condition in brackets,
we can enter i<10. Then curly braces and the npcs.push line. Then i++. If you forget to
include i++, the while loop will loop forever. Because of this while loops can be
dangerous. A while loop that loops forever can bring your web page to a grinding halt.
Beware.

let i = 0;

while(i<10){
 npcs.push(createNPC());
 i++;
}

As well as using for with 3 statements. We can use for-in to access the properties of an
object. Let’s create a variable that accesses npcs[0]. Then we’ll add a little console
message. Then we enter for and create a new variable prop followed by in npc.
Whatever we put in the code block will now repeat with prop equal to the property
names in the object npc. We can print this to the console using the log method. We use
both the prop name and the value that this is set to. You can access the value of a
property in an object using either object variable name dot property name. Or you can
use square brackets and a string version of the property name.

const npc = npcs[0];
console.log("npcs[0] has the following properties... ");

for(let prop in npc){
 console.log(prop + ":" + npc[prop]);
}

Save and let Live Server refresh your browser. The property names and their values are
printed out.

JavaScript in 12 easy lessons

54
JavaScript in 12 easy lessons

Diagram 9.1 – Using for-in to show property values

Notice how we can access an objects property either by using dot syntax, or the name
of the property as a string inside square brackets.

Enter

Enter

The last loop option we’ll review at this stage is the foreach method of an Array. We’ll
need an index value. Then we enter npcs.forEach, it is important to use the capital E.
JavaScript is case sensitive. In the brackets we enter a function. A new way to de�ne
functions in JavaScript is to use arrow functions. Using the forEach method the
callback function we create will have a parameter which is each npc in the array in turn.
To track this variable enter npc then an arrow that is equals followed by greater than,
then curly brackets.

npc => { }

npc.weapon

you see the weapon for this npc.

npc[‘weapon’]

and you see the same return value.

JavaScript in 12 easy lessons

55
JavaScript in 12 easy lessons

We could have used

function(npc){ }

It is the same. But you will inevitably come across arrow functions and it is important
that you understand them.

Then we enter a log string we use the index value i, in the string and the value of
npc.weapon. This is not npcs[0], this is a new version of the variable npc, that will be
npcs[0] for the �rst iteration, then npcs[1] all the way up to npcs[9]. So the number we
print in the string goes up, we add one to the variable i using the ++ increment operator.

let i=0;

npcs.forEach(npc =>{
 console.log('NPC no.' + i + ' uses a ' + npc.weapon +
 ' as its chosen weapon.');
 i++;
});

Save and over in the browser allow it to refresh. Now you have a list of NPCs showing
their weapon of choice.

JavaScript in 12 easy lessons

56
JavaScript in 12 easy lessons

Diagram 9.2 – Using forEach

Loops are very important in programming, and you’ll �nd many times where you’ll use
the different methods outlined in this lesson. If you get confused, come back to this
lesson and review it.

JavaScript has a great technique for extending objects so they can easily include
methods as well as properties and we do that using classes, which is the topic of the
next lesson.

JavaScript in 12 easy lessons

57
JavaScript in 12 easy lessons

10. Lesson 8 - Classes
JavaScript classes allow you to combine properties and methods. To code along with
this lesson open the �le index.html in the folder start/lesson8. To create a new class
you use the keyword class, then the name of the class you’re creating followed by curly
braces.

class myClass{
}

JavaScript is a big fan of curly braces. If you need to initialize values in a class you
need a special function called a constructor. This function is called when you create a
new instance of the class. To clear up all this terminology, let’s create a simple class to
represent a 2d point.

We enter class, all lower case, then the class name, we’ll call it Point. Then the curly
braces and for a Point we’ll need 2 parameters, an x value and a y value. The
constructor function is where we initialize the class properties. Inside a class you need
to use this to access the class instance. We set this.x to the passed parameter x and
this.y to y. That’s it. To create a new instance of a point simply enter new Point(, then
the values for x and y, followed by the closing bracket.

class Point{
 constructor(x,y){
 this.x = x;
 this.y = y;
 }
}

const pt = new Point(20, 65);

Save your work and over in your browser, open start/lesson8/index.html using Live
Server. If you enter

pt

JavaScript in 12 easy lessons

58
JavaScript in 12 easy lessons

Diagram 10.1 – Examining the Point class

You will see that you have an instance of a Point. The great thing about classes is the
way we can add methods. Before we see this in action let’s create a new class. This
time it is a class to represent a Rectangle. We’ll have left, top, width and height as
parameters. Like we did with the Point class we copy the parameters to class properties
using the this keyword.

Now we can create 2 instances of the Rectangle class using new Rectangle and 4
parameters. Parameter 1 is the left position, parameter 2 the top position, parameter 3
is the width and parameter 4 the height.

class Rectangle{
 constructor(left, top, width, height){
 this.left = left;
 this.top = top;
 this.width = width;
 this.height = height;
 }
 }

const rect1 = new Rectangle(10, 10, 100, 50);
const rect2 = new Rectangle(50, 20, 200, 80);

If you save your work and back in the browser allow Live Server time to refresh then
enter

rect1

JavaScript in 12 easy lessons

59
JavaScript in 12 easy lessons

You’ll see the parameters of the �rst rectangle.

Diagram 10.2 – Using the console to view rect1

So far this isn’t very different from an object. Let’s start to explore how it differs. We’re
going to add a special kind of property to the class. If we use the keyword get we can
then enter a function with no parameters that returns a value. If we use this syntax it is
called a getter property. It is used to add a property that can be calculated from other
class properties. We’ll create a getter property that returns the area of the rectangle. This
is simply width times height. Don’t forget to use this for class properties.

get area(){
 return this.width * this.height;
}

Save, browser refresh and enter

rect1.area

We get the value 5000, 100 times 50. Notice we just used the property name area, no
brackets. If you do add brackets you’ll get rect1.area is not a function. Because this
special kind of function, a getter property, cannot be called like a standard JavaScript
function. It appears to anything calling it as though it is a property of the class.

Now let’s create a method. Inside a class a method does not use the function keyword,
you just use the name of the method, then any parameters inside brackets and �nally
the code for the method inside curly braces. Let’s create a method that moves the
Rectangle. We’ll use the parameters x and y. x to indicate the movement to the left
property and y the movement to the top property. We simply use the += operator.
Remember this.left += x; is the same as this.left = this.left + x. It is simply a short-cut
way of scripting this.

JavaScript in 12 easy lessons

60
JavaScript in 12 easy lessons

move(x, y){
 this.left += x;
 this.top += y;
}

Save, browser refresh and enter

rect1.move(0, 100)

Now if you enter

rect1

The top value is 110, not the original 10 value that the rectangle was when we created
it.

Now for a more complex method. We’re going to create a method that takes another
Rectangle as a parameter and returns true if the passed Rectangle overlaps with the
Rectangle calling the method. To do this we’ll create four Points. The top left and
bottom right of each Rectangle. If left of rect1, l1.x is greater than the right edge of rect2,
r2.x, then there cannot be an overlap. If the left edge of rect2 is greater than the right
edge of rect1 then there cannot be an overlap. We use the logical or operator || so that if
either of these are true we return false, there is no overlap. This completes the horizontal
test.

Next, we test vertically. For this we test if the top edge of rect1 is below the bottom edge
of rect2 or the top edge of rect2 is below the bottom edge of rect1. If either of these are
true, then there cannot be an overlap. For an overlap to occur all of these four
conditions must be false. If that is the case, then we can return true.

JavaScript in 12 easy lessons

61
JavaScript in 12 easy lessons

overlap(rect){
 const l1 = new Point(this.left, this.top);
 const r1 = new Point(this.left + this.width,
 this.top - this.height);
 const l2 = new Point(rect.left, rect.top);
 const r2 = new Point(rect.left + rect.width,
 rect.top - rect.height);
 // If one rectangle is to the right of the other
 if (l1.x >= r2.x || l2.x >= r1.x){ return false; }
 // If one rectangle is below the other
 if (l1.y <= r2.y || l2.y <= r1.y){ return false; }

 return true;
 }

Let’s �nally enter some messages that use the methods we’ve created. First, we’ll
display the area of rect1, using the getter property area. Then we’ll use the overlap
method to print an overlap message to the console. Then we’ll use the move method to
move rect1 and now we’ll repeat the overlap message.

console.log('The area of rect1 is ' + rect1.area);

console.log('rect1 overlaps rect2 ' + rect1.overlap(rect2));

rect1.move(0, 100);

console.log('rect1 overlaps rect2 ' + rect1.overlap(rect2));

Initially the rectangles overlap like this.

JavaScript in 12 easy lessons

62
JavaScript in 12 easy lessons

Diagram 10.3 – Before rect1 is moved

After moving rect1 they are like this with no overlap.

Diagram 10.4 – After moving rect1

JavaScript in 12 easy lessons

63
JavaScript in 12 easy lessons

Save, refresh the browser and you get 3 messages. The area of rect1 and then two
messages about the overlap of rect1 and rect2. The �rst is true, the second after the
move call is false. Great work.

Diagram 8.2 – Output from start/lesson8/index.html

Classes connect properties and methods in a way that makes code clearer.

As your code gets more complex you are likely to use more than one text �le to store
your code. When this happens a great way to load the code is to use modules and we’ll
look at this in the next lesson.

JavaScript in 12 easy lessons

64
JavaScript in 12 easy lessons

11 Lesson 9 - Modules
So far, all our code has been inside a script tag in the index.html �le. For small
programs like the examples in this course, this approach is �ne. But when you create a
more complex web application you’ll be using lots of code and if you try and keep this
in a single �le, it will become very hard to maintain the code.

You can add additional JavaScript �les like this

<script src=”pathtofile/myJSFile.js”></script>

But the approach we’ll use in this lesson is to use modules.

If you open the folder start/lesson9 you see it has three �les. index.html as usual and
Point.js and Rectangle.js. Let’s take a look at the �le Point.js. Using the extension .js
means this is a �le containing JavaScript code. This �le just contains the code we
entered for a Point class in the previous video. But there is an additional line at the end.

class Point{
 constructor(x,y){
 this.x = x;
 this.y = y;
 }
}

export{Point};

export{Point};

When we use modules, we use the keywords export and import. We can choose what to
export from the JavaScript �le, if the �le contains classes and functions, we can select
which are exported leaving others private to the �le. Whatever we are exporting goes
inside curly braces, JavaScript loves curly braces. If there is more than one export then
the names are separated by commas.

export{ Planet, Moon, Star }

JavaScript in 12 easy lessons

65
JavaScript in 12 easy lessons

Now take a look at the Rectangle.js �le. You probably guessed that this contains the
code for the Rectangle class. But if you recall the Rectangle class needs to know about
the Point class. Notice at the start of the �le there is an import line.

import {Point} from ‘./Point.js’

JavaScript in 12 easy lessons

66
JavaScript in 12 easy lessons

import {Point} from './Point.js';

class Rectangle{ constructor(left, top, width, height){
 this.left = left;
 this.top = top;
 this.width = width;
 this.height = height;
 }

 move(x, y){
 this.left += x;
 this.top += y;
 }

 get area(){
 return this.width * this.height;
 }

 overlap(rect){
 const l1 = new Point(this.left, this.top);
 const r1 = new Point(this.left + this.width,
 this.top - this.height);
 const l2 = new Point(rect.left, rect.top);
 const r2 = new Point(rect.left + rect.width,
 rect.top - rect.height);

 // If one rectangle is on left side of other
 if (l1.x >= r2.x || l2.x >= r1.x){ return false; }
 // If one rectangle is below the other
 if (l1.y <= r2.y || l2.y <= r1.y){ return false; }

 return true;
 }
}

export { Rectangle };

JavaScript in 12 easy lessons

67
JavaScript in 12 easy lessons

Again, we use the ubiquitous curly braces, then a name used in the export line from the
�le chosen as the from path. We use dot forward slash to indicate the current folder, the
folder where you’d �nd the �le doing the importing and ../ to move to the folder above
the current one. All from paths must start with either ./ or ../.

When we use modules, we need to inform the JavaScript compiler. We add

type=’module’

To the starting script tag.

If you look in the index.html �le you’ll see it makes use of the Point and Rectangle
classes, just like in the previous video. But there is no indication of a module or any
attempt to import the necessary �les.

If we open the page now with the developer console open you’ll see

Can you �x this? You’ll need to make sure that JavaScript knows that this is a module
and specify import lines for the Point and Rectangle classes. Put the book down now
and see if you can write the necessary code.

 ‘Uncaught ReferenceError: Point not defined’

JavaScript in 12 easy lessons

68
JavaScript in 12 easy lessons

Nice and simple. First, we use type equals module so JavaScript knows to interpret this
as a module. Then we use the keyword import, followed by what we’re importing in curly
braces then where we �nd the necessary �le. Because the �le is in the same folder as
the index.html page, the path starts with ./, this is interpreted as the same folder as the
�le that is importing the external module.

<script type='module'>
 import {Point} from './Point.js';
 import {Rectangle} from './Rectangle.js';

Now if we save and refresh the browser, we get the log messages that we got in the
previous video. Using modules allows you to reuse code you create and makes your
code much tidier and easy to maintain.

One thing new programmers �nd confusing, is scope. You probably have no idea what I
mean, let’s address that in the next lesson.

JavaScript in 12 easy lessons

69
JavaScript in 12 easy lessons

12. Lesson 10 - Scope
Understanding how scope affects access to variables and class properties and
methods can be very confusing. In this lesson I’ll try and make it clear.

To code-along open the �le index.html from the folder start/lesson10. There is a
variable called name de�ned, a function called myFunc and a class called game. The
name variable is de�ned at the root of the script, so it has global scope. You can access
it anywhere. As you get more experienced with your programming, you’ll learn that
global variables should, where possible be avoided. But this isn’t a lecture about good
coding practice, it is about scope.

Make sure you’re using Live Server to view lesson10/start/index.html. In the console
enter name and the value of name should appear.

Back in VSCode add this console log statement and call to myFunc.

console.log(`name=${name}`);
myFunc();

Notice I’m using backticks, not single or double quotes, inside the log brackets. Using
backticks we create a template string and if we use a dollar sign and the ubiquitous
curly braces you can include JavaScript code inside the string value. This will print the
value of name. Then we call the function myFunc. Before we run this, let’s have a quick
look at this function.

JavaScript in 12 easy lessons

70
JavaScript in 12 easy lessons

function myFunc(){
 console.log(`Inside myFunc name=${name}`);

 if (true){
 let course = "The beginners guide to 3D web game
development with ThreeJS";

 const lesson = 10;

 console.log(`course='${course}' inside if statement`);
 console.log(`lesson=${lesson} inside if statement`);
 }
}

We have a console statement to print the value of name. What do you think name will
be inside the function? We’ll see in a minute. Then we have an if statement where the
condition it true, so it will always process the statements inside the curly braces. We
create a variable and a constant, then we print the values of these to the console.

Time to use Live Server to run the start/lesson10/index.html

Diagram 12.1 – First scope messages

Outside of the function and inside the function, name has the value ‘Nik Lever’, since the
variable ‘name’ has global scope. Then course and lesson have the values assigned to
them. So far so good.

JavaScript in 12 easy lessons

71
JavaScript in 12 easy lessons

Now outside the if code block but still inside the myFunc function. Copy the course and
section console log lines switching inside to outside.

console.log(`course='${course}' outside if statement`);
console.log(`lesson=${lesson} outside if statement`);

Let’s add 'Inside myFunc' to the console lines, so we can clearly see the console lines
called inside this function.

const name = "Nik Lever";

function myFunc(){
 console.log(`Inside myFunc name=${name}`);

 if (true){
 let course = "JavaScript in 12 easy lessons";
 const lesson = 10;
 console.log(`Inside myFunc: course='${course}' inside
if statement`);
 console.log(`Inside myFunc: lesson=${lesson} inside if
statement`);
 }

 console.log(`Inside myFunc: course='${course}' outside if
statement`);
 console.log(`Inside myFunc: lesson=${lesson} outside if
statement`);
}

Save, let Live Server refresh the browser.

JavaScript in 12 easy lessons

72
JavaScript in 12 easy lessons

Diagram 12.2 – Uncaught ReferenceError

We get an Uncaught ReferenceError, if you click the link, you’ll see it is the console log
line outside the if code block, where we attempt to display the value of course. This is
because the variable course only exists inside the if code block, not outside the code
block. It has local scope to within the curly braces of the if statement.

Diagram 12.3 – Displaying where the error occurs in the code

JavaScript in 12 easy lessons

73
JavaScript in 12 easy lessons

This error will stop any further code running in the function. To allow the code to
continue, we can put the problem code inside a try – catch block. We use the keyword
try then curly braces wrapping the code, followed by the keyword catch and brackets.
Inside the brackets we add an error object, then we add more curly braces and inside
these curly braces we add a console message that will display the message property of
the err parameter to the catch block.

function myFunc(){
 console.log(`Inside myFunc name=${name}`);
 if (true){
 let course = "JavaScript in 12 easy lessons";
 const lesson = 10;
 console.log(`Inside myFunc: course='${course}' inside
if statement`);
 console.log(`Inside myFunc: lesson=${lesson} inside if
statement`);
 }

 try{
 console.log(`Inside myFunc: course='${course}' outside
if statement`);
 console.log(`Inside myFunc: lesson=${lesson} outside if
statement`);
 }catch(err){
 console.error(`myFunc:${err.message}`);
 }
}

Save and let Live Server refresh the browser. You can expand the error to see how we got
to this line. Adding a try-catch block is a useful technique for di�cult to �x code bugs.

JavaScript in 12 easy lessons

74
JavaScript in 12 easy lessons

Diagram 12.4 – Expanding an error console output

Now let’s turn our attention to the App class.

In the mouseMove method add this console log statement

console.log(this.name);

And in the App constructor add an event listener. This neat bit of code, means whenever
there is a mouse movement we can call a chosen function. Notice the event name is
‘mousemove’, that is the event we are going to be listening out for. The second
parameter is the function to call when this happens.

document.addEventListener('mousemove', this.mouseMove);

Now immediately after the class closing curly brace, let’s create an instance of the
game class. Notice we need to pass a name as a parameter.

const myGame = new App("Scope example");

Save and refresh the browser. Lots of errors. Switch to the Sources tab and click on the
number of the �rst line in the mouseMove method. Now when you move the mouse the
processor will stop at this line, you’ve added a breakpoint.

JavaScript in 12 easy lessons

75
JavaScript in 12 easy lessons

Diagram 12.5 – Inside mouseMove this is the HTML document

Hover over this and slide down to see that this is not the game at all, it is the HTML
document. This is easily �xed.

Jump back to VSCode and back where we created the event listener, add

.bind(this)

document.addEventListener('mousemove',
this.mouseMove.bind(this));

Now inside the function, instead of this being the document, this will be the App as
expected. Save and let Live Server refresh to con�rm. We see the App name, ‘Scope
example’, as expected. If we add a breakpoint as before, we can clearly see by hovering
over the word this in the mouseMove method that this is now the App instance. Nice.

JavaScript in 12 easy lessons

76
JavaScript in 12 easy lessons

Diagram 12.6 – this is now the App instance

Notice the showDays method. In the constructor for the App we created an array of
days.

this.days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday', 'Saturday', 'Sunday'];

In the showDays method we use the forEach method of an Array to attempt to display
each day.

showDays(){
 this.days.forEach(function(day){
 console.log(`global name: '${name}' app
name:'${this.name}' day:'${day}'`);
 });
}

JavaScript in 12 easy lessons

77
JavaScript in 12 easy lessons

To emphasize the role of scope we also show the global value of name and the local
value of name using a template string. Enter this code to call this method.

myApp.showDays();

Then save and let Live Server refresh your browser.

Diagram 12.7 – Uncaught TypeError

You’ll get an Uncaught TypeError,: Cannot read property ‘name’ of unde�ned. That’s
because the function has its own scope and 'this' inside the function is not the App.
There are two ways to �x this. The easiest is to switch to arrow functions. Arrow
functions have the scope of where they are de�ned. So 'this' will be the App.

this.days.forEach(day =>{

If we save and refresh, we now get all the days in the Array displayed as expected.
Notice also that global name and local name are as expected.

The optional way is to create a variable, often called 'self' and set 'self' equal to 'this'.
Then inside the function we replace 'this' with 'self'.

JavaScript in 12 easy lessons

78
JavaScript in 12 easy lessons

const self = this;

this.days.forEach(function(day){
 console.log(`global name: '${name}' game
name:'${self.name}' day:'${day}'`);
});

Again, if we save and refresh, now self.name points at the game name and so no errors
are generated.

Scope is challenging for new programmers but with practice you’ll soon understand
where the problems are.

Maths allows us to achieve some stunning visual effects. We’ve met the JavaScript
Math object already in this course, in the next lesson we’ll look at some super useful
methods of this object that you can use in your web apps. Don’t skip the chapter
because you hate Maths!

JavaScript in 12 easy lessons

79
JavaScript in 12 easy lessons

13. Lesson 11 - Math
Often you’ll be using a little Maths in your code. To code along with this video open
index.html from the folder start/lesson11, and also open Vec.js from the same folder.

First notice that the Vec class has copy, clone, add, sub, distanceTo, angle and
angleBetween methods and we’ll review these as they come up in the code we enter.

First, we’ll create 3 instances of the Vec class.

const a = new Vec();
const b = new Vec(4, 0);
const c = new Vec(4, 3);

The name Vec is short for vector. In Maths a vector is simply a value with more than
one component. We’ll see a lot of vectors over the course. When a value has a single
component, it is called a scalar. The Vec class has two components, x and y. So, to
create one we use two parameters. But if we don’t provide any parameters the
constructor code for a Vec instance has the default value 0 for both x and y. By adding
equals and a value we can easily add default values for parameters to any function.

class Vec{
 constructor(x=0,y=0){
 this.x = x;
 this.y = y;
 }
}

Here we have the Vec instances 0,0, 4,0 and 4,3.

JavaScript in 12 easy lessons

80
JavaScript in 12 easy lessons

Diagram 13.2 – The Vec instances plotted

If we show these as a triangle they may be more familiar.

Diagram 13.2 – Vec instances forming a triangle

If you recall your Pythagoras, a popular example is a triangle, with one edge of 4 units
and another of 3 units. If we square the 4 we get 16 and square the 3 we get 9, add
them together we get 25. Find the square root of 25 and we get the length of the
hypotenuse, the longest side, the one away from the right angle.

JavaScript in 12 easy lessons

81
JavaScript in 12 easy lessons

Diagram 13.3 – Using Pythagoras to �nd the length of the longest edge

If you recall the Vec class has a distanceTo method. The distance from a, 0,0 to c at 4,3
should be 5 units. Let’s add a console message, we’ll use a template string and inside
the dollar curly braces call the distanceTo method. Now check if 5 is the length we get.

const a = new Vec();
const b = new Vec(4, 0);
const c = new Vec(4, 3);

console.log(`The distance from a to c is
${a.distanceTo(c).toFixed(2)}`);

JavaScript in 12 easy lessons

82
JavaScript in 12 easy lessons

Save and refresh and we get exactly that. I added toFixed(2), this limits the number of
values after the decimal point to the value we enter as a parameter. So, we get 5.00.

Diagram 13.4 – Output from Vec.distanceTo method

Let’s take a look at the Vec class method distanceTo.

distanceTo(pt){
 const delta = this.clone().sub(pt);
 return Math.sqrt(delta.x*delta.x + delta.y*delta.y);
}

First, we de�ne a value delta this is a clone of the Vec instance calling the method, a
copy in other words. Here we have the Vec instance a, which has the value 0,0. Then we
use the method sub, which subtracts the passed Vec. At this stage delta has the values,
-4, -3. We multiply -4 by -4, getting 16, then add -3 times -3 getting 16 + 9. I hope you
remember that positive times positive is positive, positive times negative is negative but
negative times negative is also positive. The value we pass to the Math method sqrt,
short for square root, is 25. The square root of 25 is 5. You’ll be amazed how often you’ll
use Pythagoras’ theorem to �nd the distance between two objects if you do any game
programming. The theorem also works in 3 dimensions just as well as in 2 dimensions.

Another common problem is �nding the angle between two vectors. If instead of
thinking of b and c as points in 2d space, we think of them as lines extending from the
origin, 0,0. Then we can �nd the angle between them using the Math method atan2.
Again, we’ll reduce the precision to just two numbers after the decimal point. Add this
code

console.log(`The angle between b and c
is ${b.angleBetween(c).toFixed(2)} degrees`);

JavaScript in 12 easy lessons

83
JavaScript in 12 easy lessons

Save and refresh and we get the angle between vector b and vector c.

Diagram 13.5 – Displaying the angleBetween output

The Vec.angleBetween code creates two angles using the angle method of the Vec
class.

angle() {
 const theta = Math.atan2(-this.y, -this.x) + Math.PI;
 return theta;
}

angleBetween(pt){
 const theta1 = this.angle();
 const theta2 = pt.angle();
 return Math.abs(theta1 - theta2) * 180 / Math.PI;
}

Diagram 13.6 – Vectors b and c

JavaScript in 12 easy lessons

84
JavaScript in 12 easy lessons

The angle method returns the angle between the vector and the positive x axis. For b
which is inline with the x axis the value is zero. Whereas c has the angle 0.6435. You
might have been expecting a value around 30 degrees. Vec.angle uses the Math
method atan2 to get the angle. All Math trig functions and atan2 is one, return a value
in radians. There are 2π radians in a full revolution. This is a very important fact, so I’ll
say it again. There are 2π radians in a full revolution.

The angle method uses the atan2 method, this takes the y value and the x value as
parameters. The atan2 method returns a value between -π and π, to ensure only
positive values we negate the parameters and add π to the returned value.

Now we have 2 angles, theta1 and theta2, we get the angle between them by
subtracting one from the other. We use another Math method abs, this returns the
absolute value, a negative value becomes positive. Then we multiply by 180 and divide
by π to convert the radian value to degrees.

So far, you’ve met, sqrt, atan2, abs methods and the constant π from the Math object
and have learnt how to �nd the distance between two points in 2d space and the angle
between two 2d vectors. Two other useful methods are the sin and cos methods. Notice
on this page we have a star displayed. We’re going to write some code to rotate this star
around in an orbit.

Enter

const center = new Vec(150, 150);

const radius = 100;
let theta = 0;

const star = document.getElementById('star');

To start with we need a couple of constants and a variable. center will be the point in
the web page that is the centre of the orbit. Radius is the distance that the star will be
from this centre point. theta is the Greek word commonly used to represent an angle,
we’ll initialize it to zero. Now we need to get the star element. It has been given the id
star so we can use the document method, getElementById to access it.

JavaScript in 12 easy lessons

85
JavaScript in 12 easy lessons

Now we need to de�ne a function that will update the value of theta then calculate
where to place the star and set its style values to position it. We’ll call it rotateStar. We
want this to be called repeatedly, a great way to do that is to use the JavaScript method
requestAnimationFrame.

function rotateStar(){
 requestAnimationFrame(rotateStar);
 theta += 0.05;
}

This is a built-in function and will be called around 60 times a second if the browser
can keep up. It takes a function that it will call. Here we call rotateStar again. So, this
function keeps calling itself. Now we have a repeating function we need to update theta,
by adding 0.05, it will take 100 calls to change theta by 5. A full revolution is 2π or
about 6.3. 6.3/0.05 is about 125. At 60fps the star will take about 2 seconds, 60 * 2
being 120, to complete an orbit.

Diagram 13.7 – Setting the x position of the star

JavaScript in 12 easy lessons

86
JavaScript in 12 easy lessons

The x position of the star can be set using the Math method cos, which returns the
cosine of the passed angle. The cosine will return a value between -1 and 1. We want a
value between -radius and radius so we multiply the returned value by radius then we
add the centre x value. That gives us the x position. When theta = 0, cos = 1, theta = π/2,
cos = 0, theta = π, cos = -1, theta = 3π/2, cos = 0. So the x value slides left until theta =
π, then slides right until theta = 2π. This then repeats.

Diagram 13.8 – Setting the y position of the star

The y position is more or less identical, but we use the sin method not cos. When theta
= 0, sin = 0, theta = π/2, sin = 1, theta = π, sin = 0 and theta = 3π/2, sin = -1. Here the y
value increase to π/2, then decreases to 3π/2, then increases again to 2π.

We can use the calculated values x and y to set the left and top values of the style
property of the star element. When setting CSS style values we need to supply a unit,
here we use ‘px’, short for pixel.

Add a call to rotateStar to star the looping action.

JavaScript in 12 easy lessons

87
JavaScript in 12 easy lessons

const centre = new Vec(150, 150);
const radius = 100;

let theta = 0;
const star = document.getElementById('star');

rotateStar();

function rotateStar(){
 requestAnimationFrame(rotateStar);
 theta += 0.05;
 const x = Math.cos(theta) * radius + centre.x;
 const y = Math.sin(theta) * radius + centre.y;

 star.style.left = `${x}px`;
 star.style.top = `${y}px`;
}

Save and refresh and you have a rotating star.

The key uses of Maths in your apps will be to �nd distances, angles and to use sin and
cos for smooth movements. Great work.

There just one more thing I’d like to tell you about before we �nish and that is about
JSON, a great way in which you can initialize your applications data. Find out all about
it in the next lesson.

JavaScript in 12 easy lessons

88
JavaScript in 12 easy lessons

14. Lesson 12 - JSON
JSON stands for JavaScript Object Notation. It’s great for loading data into a web app.
A JSON �le is just a simple text �le. Take a look at characters.json from the folder
start/lesson12.

[
 "King Arthur",
 "Merlin",
 "Lancelot",
 "Guinevere"
]

Because the �rst character is a square bracket, the JSON parser knows to interpret the
remaining text as an Array. If it started with a curly brace then it would be read as an
object, we’ll see how that works in a minute.

The aim is to load this �le into your app so you can use it as a JavaScript Array. The
easiest way is to use the built-in method fetch. This returns something called a
Promise. The key feature of a Promise is it works asynchronously. While it is busy doing
its work, the main program can continue. It doesn’t block progress. When you work with
a Promise you add a then method, this will be called when the Promise resolves, either
successfully or unsuccessfully. In the case of a fetch, we get a response, the �le that
has been fetched. We can call the json method on this response, which is itself another
promise. If this successfully parses the �le into a JavaScript Array or object then we get
this value as a parameter and can create a callback function using the forEach method
of an Array to display each character in the console.

fetch('./characters.json')
 .then(response => response.json())
 .then(obj =>{
 obj.forEach(character => console.log(character));
 });

Save, load start/lesson12/index.html using Live Server and you’ll see key characters
from the King Arthur legend.

JavaScript in 12 easy lessons

89
JavaScript in 12 easy lessons

Diagram 14.1 – Outputting the character.json �le

The JSON syntax is not at all forgiving. To see what I mean, remove the last double
quote from Guinivere. Now save and when your browser refreshes you’ll get an
‘Uncaught in promise error. SyntaxError unexpected token in JSON’.

Diagram 14.2 – Problem parsing a JSON �le

When using Promises it is usually best to add a catch block to the end of the then
callbacks, like this

obj.forEach(
 character => console.log(character));
}).catch(err => console.error(err));

If you save and refresh now it dies much more gracefully.

JavaScript in 12 easy lessons

90
JavaScript in 12 easy lessons

Diagram 14.4 – Using a catch handler in the fetch code

If your JSON �le is complicated, then tracing the error can be tricky. VSCode can help

Diagram 14.5 – Using VSCode to track down JSON parsing errors

A useful online tool is jsonLint.com. Copy the text from the �le, paste it in and press
Validate JSON. If you get an Error, the problem is usually on the next line after the
highlighted red one. Adding a double quote back, pressing Validate JSON and we’re
good to go.

JavaScript in 12 easy lessons

91
JavaScript in 12 easy lessons

Diagram 14.6 – Using jsonlint.com

Don’t forget to �x the characters.json �le back in VSCode.

I mentioned if the �le starts with a curly brace then the remainder is interpreted as an
object. Take a look at planetinfo.json.

JavaScript in 12 easy lessons

92
JavaScript in 12 easy lessons

{
 "description": "Planets in the solar system",
 "planets": [
 { "name": "Mercury",
 "aphelion": 69.8,
 "perihelion": 46.0,
 "radius": 2439,
 "moons": [0]
 },
...

This is more complex, to start with it is an object. As such it contains name/value pairs.
Notice the name description and then a colon and then the value of this property. Take
a good look at how we loaded the characters.json �le and see if you can load the
planetinfo.json �le and then display the description line in the console. Put the book
down now and give it a try.

JavaScript in 12 easy lessons

93
JavaScript in 12 easy lessons

We can just copy the �rst fetch code block. Replace characters with planets. Then
replace the forEach line with a simple console log statement. We log obj.description.
Save and refresh to see the line printed to the console.

fetch('./planetinfo.json')
 .then(response => response.json())
 .then(obj =>{
 console.log(obj.description);
 }).catch(err => console.error(err));

Diagram 14.7 – Showing the description line

Now we have a bunch of facts about the planets, let’s see if we can display the largest
planet. We’ll create a function to do this, that takes the planets array, which is the other
property in the planets object. We’ll replace the console log line in the then callback with
a call to this new function passing obj.planets, the planets property of the JSON object
we’ve just loaded. If we look back at the planetinfo.json �le, you’ll see this is an Array.
Notice after the colon, square brackets. So the planetinfo.json �le is parsed as an object
with two properties. Remember object properties and name value pairs. The �rst name
value pair is description which is a string value and the second name value pair is
planets and this is an Array.

Remember square brackets – arrays, curly braces – an object de�ned as a series of
name value pairs. The name and the value are separated by a colon and each name
value pair is separated from the next using a comma.

JavaScript in 12 easy lessons

94
JavaScript in 12 easy lessons

To �nd the largest planet, we have an Array of planets. Each item in the Array is an
object. One property of this object is radius. We just need to �nd which object in the
Array has the largest radius property. We’ll use the reduce method of an Array. This
reduces an Array to a single value. It does this using a callback with two parameters.
Parameter one is the accumulator value, this is initialized to the �rst item in the array.
Then the second parameter will be the second item in the Array for the �rst call back.
We check if acc.radius is greater than loc.radius, if it is then we return acc, if not we
return loc. This callback will continue, with acc set as largest value so far and loc set as
the third, then forth up to the last item in the array. By returning the largest of the saved
value and each item in the array we �nd the largest planet in the array. This table
should help your understanding.

acc loc acc.radius loc.radius stored

Mercury Venus 2439 6052 Venus

Venus Earth 6052 6371 Earth

Earth Mars 6371 3389 Earth

Earth Jupiter 6371 69911 Jupiter

Jupiter Saturn 69911 58232 Jupiter

Jupiter Uranus 69911 25362 Jupiter

Jupiter Neptune 69911 24622 Jupiter

Table 14.1 – How the reduce function returns the largest planet

JavaScript in 12 easy lessons

95
JavaScript in 12 easy lessons

The �rst time we enter the callback method. acc is Mercury and loc is venus. Looking at
the radius values we can see that for this pass loc radius is larger so we store venus. As
we enter the second pass acc is now Venus and loc is earth. Earth is larger so we store
Earth as the acc, the accumulator, value. Now we test Mars, this is smaller than Earth so
we keep Earth as the acc value. We move on to Jupiter, which is much bigger than Earth
so we now store Jupiter as the acc value. As we iterate through Saturn, Uranus and
Neptune, Jupiter is the largest, so Jupiter remains as the acc value. We exit the method
with largest set to Jupiter.

function displayFacts(planets){
 const largest = planets.reduce((acc, loc) => acc.radius >
loc.radius ? acc : loc);
 console.log(`The largest planet is ${largest.name}`);
}

Save and refresh you’ll see that Jupiter is the largest planet. Nice.

Can you use a similar technique to display the smallest planet?
Put the book down and give

it a try.

You’ll need to adapt the
reduce method to save the planet with the smallest radius.

JavaScript in 12 easy lessons

96
JavaScript in 12 easy lessons

How did that go? Just a case of copying the existing code and changing greater than
for less than. And changing largest to smallest. Save and refresh and the answer is
clearly Mercury. Nice work.

const smallest = planets.reduce((acc, loc) => acc.radius <
loc.radius ? acc : loc);
console.log(`The smallest planet is ${smallest.name}`);

That completes your introduction to JavaScript. You’re ready to start creating your �rst
web apps. Before you go a quick quiz to see what you've learnt in the course.

JavaScript in 12 easy lessons

97
JavaScript in 12 easy lessons

15. What you've learnt
1. If x=3 and y=”4” what does x + y equal?

a) “34”
b) 7
c) NaN

2. If str=”This is a string”. What is str.indexOf(‘string’)?
a) 11
b) 10
c) 7

3. Which answer would return the sum of two numbers?
a) function add(a, b){ return a + b; }
b) function add(a, b){ a + b; }
c) function sum(a + b){ return result; }

JavaScript in 12 easy lessons

98
JavaScript in 12 easy lessons

4. If a=1 and b=2. With this code snippet what gets printed to the console?

if (a>b){
 console.log('this');
}else{
 console.log('that');
}

a) that
b) this

5. Which answer adds the string ‘Pluto’, to the array planets?
a) push(planets, ‘Pluto’)
b) planets.push(‘Pluto’)
c) planets.add(‘Pluto’)

6. Which answer returns the strength property of the third NPC, from the
npcs array?
a) npcs[3][‘strength’]
b) npcs.get(2).strength
c) npcs[0].strength

7. Which answer gives the correct syntax of a for loop?
a) for(let i=0; i<10; i++){}
b) for(i=0, i<10, i++){}
c) for i in range(0,10):

8. Which is the correct syntax for defining a class?
a) class MyClass(){}
b) MyClass typeof class
c) class MyClass{}

JavaScript in 12 easy lessons

99
JavaScript in 12 easy lessons

9. Which answer would add the Point class from the file Point.js in the
current folder?
a) import (Point) from ‘. /Point.js’
b) import { Point } from ‘Point’
c) import { Point } from ‘. /Point.js’

11. If a is at (2,4) and b is at (6,7). Which answer gives the distance from a to
b?
a) Math.sqrt((6-2)*(6-2) + (7-4)*(7-4))
b) Math.sqrt((6-2) + (7-4))
c) Math.length((6-2), (7-4))

12. Is this valid JSON?
{
 array: [1, 2, “buckle my shoe”],
 “three”: “four”,
 “knock”: [‘@’, ‘the’, ‘door’]
 }
a) Yes
b) No

10. Given the code snippet below, what gets printed in the console
for(let i=0; i<10; i++){
 const n = i;
}
console.log(`n=${n}`);
a) n=0
b) n=10
c) n is not de�ned

JavaScript in 12 easy lessons

99
JavaScript in 12 easy lessons

1-a, 2-b, 3-a, 4-a, 5-b, 6-c, 7-a, 8-c, 9-c, 10-c, 11-a, 12-b

Answers

JavaScript in 12 easy lessons

101
JavaScript in 12 easy lessons

After getting a degree in Graphic Design, I started work in 1980 as a cartoon animator.
Buying a Sinclair ZX81, back in 1982, was the start of a migration to a full time
programmer. The ZX81 was quickly swapped for the Sinclair Spectrum, a Z80 processor
and a massive 48K of ram made this a much better computer to develop games. I
developed a few games using Sinclair Basic and then Assembler. The Spectrum was
swapped for a Commodore Amiga and I developed more games in the shareware
market, moving to using C. At this stage it was essentially a hobby. Paid work was still
animated commercials. I �nally bought a PC in the early nineties and completed an
Open University degree in Maths and Computing. I created a sprite library ActiveX
control and authored my �rst book, aimed at getting designers into programming. In the
mid nineties along came Flash and the company I was now running, Catalyst Pictures,
became known for creating games. Since then the majority of my working life has been
creating games, �rst in Flash and Director, as Director published the �rst widely
available 3D library that would run in a browser using a plugin. In recent years game
development has involved using HTML5 and Canvas. Using both custom code and
various libraries. A particular preference is to use the latest version of Adobe Flash, now
called Animate that exports to the Javascript library Createjs.

16. About the author

JavaScript in 12 easy lessons

102
JavaScript in 12 easy lessons

 I've worked for the BBC. Johnson and Johnson. Deloitte, Mars Corporation and many
other blue chip clients. The company I've run for over 30 years has won a number of
awards and been nominated for a BAFTA twice, the UK equivalent to the Oscar. Over the
last 20 years I have been struck by just how di�cult it has been to get good developers
and have decided to do something about this rather than just complain. I run a
CodeClub for kids 9-13 years old and I'm developing a number of courses for Udemy
hoping to inspire and educate new developers. Most of my courses involve real-time 3d
either using the popular Open Source library Three.JS or Unity. I'm currently having a lot
of fun developing WebXR games and playing with my Oculus Quest.

JavaScript in 12 easyJavaScript in 12 easy
lessonslessons

JavaScript, often abbreviated to JS, is the default language
of the internet. But it doesn’t stop there, JavaScript powers
your smart tv, works with the internet of things, and helps
build cross platform apps.

Because JS is the default language of your browser, you
can start to write JS code without installing any programs,
you can just use your browser. Making JavaScript the
easiest programming language for new coders.

You’ll be pleased to know that JavaScript is easy to learn. If
you do one lesson a day then you will have a good
grounding in the basics of coding.

Having learnt the language, you can then more readily lend
your skills to another coding language such as Python,
Java or C++.

If you’re looking to become a programmer who can always
be assured of a stable career and get well compensated
for it, then you want to learn JavaScript. In this book I
show you how.

